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1 Introduction

Recently the study of the low-energy description of multiple M2-branes has seen great

progress. In particular, the authors of ref. [1], following the work of refs. [2–8], proposed

that Nc coincident M2-branes probing a C4/Zk singularity have a low-energy description

as a particular N = 6 supersymmetric Chern-Simons-matter theory. We will refer to the

theory of ref. [1] as “the ABJM theory.”

The ABJM theory provides new information about the anti-de Sitter/Conformal Field

Theory (AdS/CFT) correspondence [9–11]. Given Nc M2-branes at a C4/Zk singularity,

when we take Nc → ∞ we can replace the M2-branes with their near-horizon geometry,

which is (3+1)-dimensional AdS space times a Zk orbifold of a seven-sphere, AdS4×S7/Zk.
The natural conjecture was that the low-energy theory of M2-branes, in the large-Nc limit,

is dual to eleven-dimensional supergravity on AdS4 ×S7/Zk. The exact low-energy theory

of multiple M2-branes was unknown before ref. [1], however.

Additionally, via AdS/CFT, the ABJM theory may also have practical applications

as a solvable toy model for certain condensed matter systems, for example systems whose

low-energy dynamics is dominated by a quantum critical point and/or is described by a

strongly-coupled Chern-Simons-matter theory.

The authors of ref. [1] derive the N = 6 supersymmetric Chern-Simons-matter theory,

and its relation to M2-branes, from a particular brane construction in type IIB string theory.

The initial configuration includes two stacks of Nc D3-branes, an NS5-brane, and a (1, k)5-

brane. At this stage we can identify the low-energy theory of the D3-branes as a (2+1)-

dimensional N = 3 supersymmetric Chern-Simons-matter theory with product gauge group

U(Nc)×U(Nc) and with equal but opposite Chern-Simons levels k and −k for the two gauge

groups, which we denote as U(Nc)k × U(Nc)−k. Performing a T-duality, an uplift to M-

theory, and a certain kind of “near-horizon” limit,1 we obtain M2-branes probingC4/Zk. A

supersymmetry enhancement occurs in the “near-horizon” limit, from N = 3 to N = 6 su-

persymmetry. The low-energy theory of the M2-branes (the ABJM theory) is thus an N = 6

supersymmetric U(Nc)k × U(Nc)−k theory with adjoint and bifundamental fields. Upon

taking Nc → ∞ and replacing the M2-branes with their near-horizon geometry, the appro-

priate description is eleven-dimensional supergravity on AdS4 ×S7/Zk. We may then take

k → ∞, where the appropriate description becomes type IIA supergravity on AdS4×CP3.

In this paper we deform the ABJM theory by introducing fields in the fundamental

representation of the gauge groups, i.e. flavor fields. We study flavor fields both in the brane

construction and also in the field theory. In particular, for a given brane construction, we

present a general recipe to determine the couplings of the flavor fields to the fields of the

ABJM theory. We then apply our general recipe to four examples, where our goals are

to write the field theory Lagrangians and to compare the symmetries of the string/gravity

description and the field theory.

1Throughout this paper we will use quotation marks to distinguish this “near-horizon” limit, which we

explain in detail below, and the usual near-horizon limit of a stack of branes, for example the near-horizon

limit of M2-branes, which produces AdS4. We define the “near-horizon” limit precisely in section 2.3, and

perform the limit explicitly in appendix B.
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To explain how we add flavor to the ABJM theory, we first recall how to add flavor

in the “usual” AdS/CFT correspondence, which arises from the study of D3-branes in flat

space. Here the gravity theory is type IIB supergravity in the near-horizon geometry of

D3-branes, which is AdS5 × S5, and the dual strongly-coupled CFT is (3+1)-dimensional

N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory in the ’t Hooft limit Nc → ∞
and additionally with large ’t Hooft coupling λ ≡ g2

YMNc → ∞.

To introduce flavor fields, we return to D3-branes in flat space and introduce additional

open string degrees of freedom, i.e. additional D-branes. The standard example is D7-

branes that intersect the D3-branes along their (3+1)-dimensional worldvolume [12]. The

endpoints of 3-7 and 7-3 strings act as pointlike excitations in the Nc or N̄c of SU(Nc) on

the D3-branes’ worldvolume. The additional branes are thus called “flavor branes.” By

now a large literature exists on the physical properties of these gauge/gravity models with

flavor, beginning with refs. [12–15] (for a review see ref. [16]).

To obtain AdS5 × S5 then requires taking Nc → ∞. If we keep the number Nf of D7-

branes fixed asNc → ∞, so thatNf ≪ Nc, then we may neglect the D7-branes’ contribution

to the stress-energy tensor, and hence we may ignore their effect on the metric.2 This limit

is called the “probe limit” because in this limit the D7-brane “cleanly probes” the geometry

without deforming it. In the field theory the probe limit amounts to ignoring quantum

effects due to the flavor, such as the running of the coupling, because such effects are

suppressed by Nf/Nc. In the language of perturbation theory, we are discarding diagrams

with quark (and/or squark) loops (sometimes called the “quenched approximation”).

Sometimes the flavor fields will be confined to a lower-dimensional defect, for example,

a supersymmetric D3/D5 intersection can give rise to probe D5-branes along AdS4 × S2

inside AdS5 × S5, which describes supersymmetric flavor fields confined to propagate only

in (2+1)-dimensions of the (3+1)-dimensional theory, i.e. along a codimension-one de-

fect [17–19]. In the construction of the associated supersymmetric defect field theory,

a convenient step was to write the ambient fields in terms of the lower-dimensional su-

perspace appropriate for the defect, based on the previous results of refs. [20–23]. The

codimension-two case of a D3-brane probe wrapping AdS3 × S1 inside AdS5 × S5 was

studied in ref. [24].

To add supersymmetric flavor to the ABJM theory, we will add supersymmetric flavor

branes in the type IIB brane construction of the ABJM theory. We begin by listing all

supersymmetric Dp-branes that are extended along the coordinate axes in the type IIB

construction (see table 1 in section 3.1). We then perform a T-duality, a lift to M-theory,

and the “near-horizon” limit to determine where these branes end up in M-theory onC4/Zk, and we compute the amount of supersymmetry the object (brane or Kaluza-Klein

(KK) monopole) preserves (table 3 in appendix C.1 lists a few examples). Lastly we take

Nc → ∞ and determine where the objects end up in M-theory on AdS4 × S7/Zk, and

for a few examples we compute the amount of supersymmetry the objects preserve (see

appendix C.2).

2Analogous statements apply for the other fields of supergravity.
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All of the above analysis occurs on the gravity side of the AdS/CFT correspondence.

How do we determine the dual field theory, including the flavor fields? As a systematic

approach to construct the field theory, we start a few steps “before” ABJM’s type IIB

construction. We begin in type IIB with just a D3/Dp intersection, where the Dp-brane

is the flavor brane. The actions for many D3/Dp systems are known (see for example

refs. [12, 18, 19, 24–28]). We then follow what happens to the action, step-by-step, during

ABJM’s type IIB construction. Two steps are crucially important in this procedure. The

first is the addition of the NS5-branes, which impose boundary conditions that set to zero

some of the degrees of freedom, as explained in refs. [29, 30]. The second is when we

take the “near-horizon” limit (after T-dualizing in x6 and lifting to M-theory). In the

field theory, this corresponds to taking a low-energy limit and writing an effective theory

valid on scales below the Chern-Simons mass scale g2
YMk/(4π) (with gYM the Yang-Mills

coupling of the (2+1)-dimensional theory). Roughly speaking, the action will be the known

D3/Dp action after 1.) imposing the NS5-brane boundary conditions and 2.) taking the

low-energy limit. The resulting action is the answer for the field theory, and should have

the correct symmetries. As we will see, however, this procedure is not always easy to

implement in concrete examples.

We apply our general procedure to four examples. We will add four different flavor

branes in type IIB, which become four objects (branes or KK monopoles) in M-theory onC4/Zk. The four branes, and the type of flavor fields they describe, are as follows:

• A D5-brane that becomes a D6-brane in type IIA and a KK monopole in M-theory,

and which introduces codimension-zero N = 3 supersymmetric flavor fields.

• A D7-brane that becomes a D8-brane in type IIA and an M9-brane3 in M-theory, and

which introduces codimension-one, chiral, N = (0, 6) supersymmetric flavor fields.

• A D3-brane that becomes a D4-brane in type IIA and an M5-brane in M-theory,

and which introduces codimension-one, non-chiral, N = (3, 3) supersymmetric

flavor fields.

• A D3-brane that becomes a D2-brane in type IIA and an M2-brane in M-theory, and

which introduces codimension-two, N = 4 supersymmetric flavor fields.

In all four cases, we describe the location of the object in M-theory on C4/Zk, calculate

the number of supercharges it preserves, and identify the isometries of the background that

it preserves. For the first two cases, we write the field theory Lagrangian describing the

coupling of the flavor fields to the fields of the ABJM theory and match the symmetries

between the field theory and supergravity descriptions. In the third and fourth cases we

take some first steps toward constructing the Lagrangians, commenting in particular on

the symmetries.

3Here, and throughout the paper, “M9-brane” will refer to the still-mysterious M-theory description of

D8-branes. The only part of the M-theory description that we really use is the name “M9-brane,” however.

In most cases, thinking of this object as a D8-brane in type IIA suffices. For more on the conjectured

M9-brane, see ref. [31] and references therein.

– 4 –
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In our analysis we find that many different Dp-branes in type IIB, for example Dp-

branes with different embeddings or even Dp-branes of different dimensionality, become the

same object in M-theory. Furthermore, the embeddings of many such M-theory objects

may be mapped into one another via an SU(4) isometry transformation (as first noted in

ref. [32]). When that occurs, we call the two objects “SU(4)-equivalent.” A natural question

is what SU(4) equivalence means in the field theory. In simple terms, SU(4) equivalence

occurs when two different theories flow to the same low-energy fixed point (corresponding

to two type IIB Dp-branes becoming the same object after the “near-horizon” limit). We

will discuss SU(4) equivalence in more detail, and provide some examples, below.

Throughout this paper we work in the probe limit whenever applicable. In other words,

whenever we have Nf flavor branes and we take Nc → ∞, we will keep Nf fixed, such that

Nf ≪ Nc. We will always consider Nf coincident flavor branes; we will never separate the

flavor branes from one another. We will also consider only massless flavor fields.

We will end our introduction by reviewing similar studies of probe branes in

AdS4/CFT3, to compare and contrast with our study.

The authors of ref. [33] considered M2-branes on C4, added probe M5-branes (codi-

mension one) and M2-branes (codimension two), and computed the spectrum of geometric

fluctuations of the probe branes. In type IIA, these probes become D4-branes and D2-

branes, respectively. Our analysis extends that of ref. [33] in two ways. First, we consider

branes probing C4/Zk with k ≥ 2 rather than C4. Second, we consider supersymmetric

M2- and M5-branes, but we also consider a KK monopole as well as the M9/D8-brane. We

do not study fluctuations of our probes, however.

In type IIA on AdS4 ×CP3, the authors of refs. [34, 35] studied D4-branes extended

along AdS3 ×CP1 and the authors of ref. [34] studied D8-branes extended along AdS3 ×CP3. We study these objects on the gravity side, but our analysis extends that of ref. [34]

primarily on the field theory side: for the D8-brane, we write the Lagrangian describing

the coupling of the flavor fields to the fields of the ABJM theory.

The authors of refs. [32, 36, 37] studied the KK monopole (D5-brane in type IIB, D6-

brane in type IIA), on both sides, gravity and field theory.4 Although we will have little to

add to the physics in this case, it serves as an especially nice example of our general recipe

before we consider more complicated cases.

This paper is organized as follows. In section 2 we review the ABJM theory and its

brane construction. Section 3 explains in general terms how to add flavor probe branes to

the ABJM theory and discusses in detail the complications that can arise in deriving the

field theory. The next sections apply this general procedure to four examples. Section 4

is dedicated to codimension-zero flavor, section 5 is dedicated to codimension-one chiral

flavor, section 6 is dedicated to codimension-one non-chiral flavor, and section 7 is dedicated

to codimension-two flavor. In section 8 we discuss SU(4) equivalence. We conclude with

some discussion in section 9. We collect various technical results in four appendices.

4An extension of the analysis of refs. [32, 36, 37] to a more general system appears in ref. [38].
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2 Review of the ABJM theory

In this section we review the ABJM theory [1]. In particular, we review its field content, La-

grangian, and symmetries. We also review the type IIB (and type IIA) brane construction

of the theory, and its large-N supergravity dual.

2.1 The gauge theory

Let us begin by writing the Lagrangian and reviewing the symmetries of the ABJM theory.

The theory is a U(Nc) × U(Nc) gauge theory with a Chern-Simons term for each gauge

group factor. The two Chern-Simons terms have equal but opposite levels, k and −k, which

we denote by U(Nc)k × U(Nc)−k.

The nicest way to write the Lagrangian is in N = 2 superspace. Our conventions are

those of ref. [39]. We use a mostly-plus Minkowski metric. The (2+1)-dimensional N = 2

supersymmetry algebra includes two Majorana spinors, which we will combine into a single

complex spinor5 θα, and its complex conjugate θ̄α, with α = 1, 2 the spinor index. The

superspace covariant derivatives are then

Dα =
∂

∂θα
+ i
(

γµθ̄
)

α

∂

∂xµ
, D̄α = − ∂

∂θ̄α
− i (θγµ)α

∂

∂xµ
, (2.1)

where γ0 = iσ2, γ
1 = σ1, and γ2 = σ3, with σ1, σ2, and σ3 the usual Pauli matrices. A

chiral superfield φ obeys D̄αφ = 0.

The ABJM theory includes the following fields:

1. Two N = 2 vector superfields Vi, one for each gauge group, hence i = 1, 2 labels

the U(Nc) factor. An N = 2 vector superfield includes a vector potential Aµ, a real

scalar field σ, two real (Majorana) gauginos, and an auxiliary real scalar field D, all

in the adjoint representation of the gauge group.

2. Two N = 2 chiral superfields Φi, each of which is in the adjoint representation. An

N = 2 chiral superfield includes two real (Majorana) fermions, two real scalars, and

a complex auxiliary scalar F .

3. Four N = 2 chiral superfields, A1, A2, B1 and B2, where A1 and A2 are in the bifun-

damental
(

Nc,Nc

)

representation and the B1 and B2 are in the anti-bifundamental
(

Nc, Nc

)

representation.

We will divide the action into three pieces,

SABJM = SCS + Sbifund + Spot, (2.2)

5We can obtain the (2+1)-dimensional N = 2 supersymmetry algebra via dimensional reduction of

the (3+1)-dimensional N = 1 supersymmetry algebra. θα is precisely the single complex spinor of the

(3+1)-dimensional N = 1 supersymmetry algebra.

– 6 –
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where, in N = 2 superspace,

SCS = −i k
4π

∫

d3x d4θ

∫ 1

0
dtTr

(

V1D̄
α
(

etV1Dαe
−tV1

)

− V2D̄
α
(

etV2Dαe
−tV2

))

, (2.3)

Sbifund = −
∫

d3x d4θTr
(

Āae
−V1Aae

V2 + B̄ae
−V2Bae

V1
)

, (2.4)

Spot =

∫

d3x d2θW + c.c., (2.5)

with the superpotential

W = − k

8π
Tr
(

Φ2
1 − Φ2

2

)

+ Tr (BaΦ1Aa) + Tr (AaΦ2Ba) . (2.6)

In Sbifund and the superpotential, summation over a = 1, 2 is implicit. All traces are taken

in the fundamental representation. Without the superpotential the action has N = 2

supersymmetry. The chiral superfields Φi combine with the corresponding Vi to form N = 4

vector multiplets, although the Chern-Simons terms only preserve N = 3 supersymmetry.

The form of the superpotential is completely fixed by N = 3 supersymmetry (see for

example ref. [40]).

The fields Φi have no kinetic terms, hence at low energy they can be integrated out,

yielding the superpotential

WABJM =
2π

k
εab εȧḃ Tr

(

AaBȧAbBḃ
)

, (2.7)

which clearly exhibits an SU(2) symmetry acting on Aa and a separate SU(2) symmetry

acting on Bȧ. We denote this symmetry as SU(2)A × SU(2)B. The R-symmetry of the

theory, SO(3)R ≡ SU(2)R, does not commute with the SU(2)A×SU(2)B: under the SU(2)R
symmetry, (A1, B

∗
1) and (A2, B

∗
2) are each a doublet. We thus conclude that the full

symmetry is SU(4), under which (A1, A2, B
∗
1 , B

∗
2) transforms as a 4. As argued in ref. [1],

the supercharges also transform under the SU(4), hence the full R-symmetry is SU(4)R ≡
SO(6)R, and hence the theory is in fact N = 6 supersymmetric.

We emphasize that at low energy the supersymmetry is enhanced, where by “low

energy” we mean energies lower than the mass, g2
YMk/(4π) (here we use a normalization

for the kinetic terms of the vector multiplet with a 1/g2
Y M in front), of the fields in the

N = 4 vector multiplet.6 We will see this supersymmetry enhancement again shortly, in

the brane construction of the theory.

The theory additionally has a U(1)b “baryon number” symmetry under which Ai →
eiαAi and Bi → e−iαBi. Remarkably, the theory also has a parity symmetry, which involves

inverting one spatial coordinate (say x1 → −x1), exchanging the two gauge groups, and

performing charge conjugation on all of the fields.

Finally, as shown in ref. [1], the moduli space of the theory is C4/Zk, where the Zk
acts as (A1, A2, B

∗
1 , B

∗
2) → e2πi/k(A1, A2, B

∗
1 , B

∗
2), where here Aa and Ba denote only the

scalar component of the corresponding superfields.

6When we integrate out the fermions in the vector multiplets, we may worry that the Chern-Simons

level will change: the adjoint fermions have the same mass with the same sign within the U(Nc) multiplet,

but with the opposite sign of fermions in the other U(Nc), so the Chern-Simons level should be shifted by

±Nc. The massive gauge fields cancel that shift, however [41].

– 7 –
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2.2 Type IIB construction

In this section we review the type IIB brane construction (of ref. [1]) leading to the N = 6

Chern-Simons-matter theory with gauge group U(Nc)k × U(Nc)−k described above. Con-

sider the following brane setup in type IIB string theory where the x6 direction is a circle.

1 2 3 4 5 6 7 8 9

NS5 • • • • • • – – – –

NS5′ • • • • • • – – – –

Nc D3 • • • – – – • – – –

k D5 • • • • • – – – – •

The NS5- and NS5′-branes are separated in the x6 direction. The Nc D3-branes, which

are extended in the x6 direction, break on the NS5-branes. The k D5-branes and the

NS5′-brane are coincident in x6.

The D3-branes, together with the NS5- and NS5′-branes, give rise to an N = 4 super-

symmetric (2+1)-dimensional U(Nc) × U(Nc) Yang-Mills theory [29]. The bosonic part of

the N = 4 vector multiplet in each U(Nc) gauge group consists of the (2+1)-dimensional

components of the D3-brane worldvolume gauge field together with the three real scalars

describing each D3-brane’s position in the (x3, x4, x5) ≡ (345) directions. Recall from the

last subsection that each N = 4 vector multiplet consists of an N = 2 vector multiplet

Vi and an N = 2 chiral multiplet Φi. The real scalars are the two real scalars in Φi plus

the real scalar σi in Vi, which thus form a vector representation of SO(3)R. Similarly, the

auxiliary fields D and F form a vector of the R-symmetry.

The theory also has (anti-)bifundamental N = 2 chiral multiplets, coming from strings

stretched between the two stacks of D3-branes. These are the fields Aa and Ba of the last

subsection, with a = 1, 2.

The k D5-branes coincident with the NS5′-branes introduce massless D3/D5 strings,

and break the supersymmetry to N = 2. The field theory thus has k massless N = 2

chiral multiplets in the fundamental and k massless N = 2 chiral multiplets in the anti-

fundamental of each U(Nc) factor.

What does any of this have to do with Chern-Simons theory? If we can give the

fundamental and anti-fundamental fields the same mass, then via the parity anomaly these

fields will produce Chern-Simons terms at low energy. More precisely, we need real masses

of equal sign. As argued in ref. [42] (see also ref. [43]), the deformation that produces such

masses is to bind the k D5-branes to the NS5′-brane, producing a (1, k)5-brane. To preserve

N = 2 supersymmetry, the (1, k)5-brane must be tilted at an angle θ in the (59) plane,

which we denote by [5, 9]θ . The angle θ depends on the complex axion-dilaton τ = i
gs

+ χ

as θ = arg(τ) − arg(k + τ). In what follows, we will always set τ = i. Such a deformation

actually gives the fundamental and anti-fundamental fields infinite mass. Integrating out

these fields then produces Chern-Simons terms with levels k and −k for the two U(Nc)

gauge groups. Moreover, we can enhance the supersymmetry to N = 3 if we additionally

rotate the (1, k)5-brane by the same angle θ in the (37) and (48) planes. We thus arrive

at the brane construction
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0 1 2 3 4 5 6 7 8 9

NS5 • • • • • • – – – –

(1, k)5 • • • [3, 7]θ [4, 8]θ [5, 9]θ – – – –

Nc D3 • • • – – – • – – –

We will henceforth refer to the final brane configuration above as “the type IIB setup.”

The field theory associated with this setup is an N = 3 U(Nc)k×U(Nc)−k Yang-Mills theory

with Chern-Simons terms and four massless bifundamental matter multiplets (Aa, Bb). We

saw above that this theory flows in the infrared (meaning energies below g2
YMk/(4π))

to the N = 6 superconformal U(Nc)k × U(Nc)−k Chern-Simons theory with the same

bifundamental matter content. The easiest way to see that happen in the brane setup is

to T-dualize and then lift to M-theory.

2.3 Type IIA and M-theory descriptions

If we perform a T-duality along x6 then the type IIB brane setup above turns into the

following type IIA configuration: the Nc D3-branes become Nc D2-branes in the (012)

directions. The NS5-brane along (012345) becomes a KK monopole associated with the x6

circle. The (1, k)5-brane becomes a KK monopole in the (0123) [3, 7]θ [4, 8]θ [5, 9]θ directions

associated with the x6 circle. Normally k D5-branes would appear as k D6-branes in type

IIA string theory. Here the k D5-branes bound into the (1, k)5-brane appear as D6-brane

flux on the KK monopole. The configuration in type IIA string theory is thus

0 1 2 3 4 5 6 7 8 9

Nc D2 • • • – – – – – – –

KK monopole • • • • • • – – – –

KK monopole with D6-brane flux • • • [3, 7]θ [4, 8]θ [5, 9]θ – – – –

We can now lift the configuration to M-theory, introducing a second circle direction,

which we will denote x♯. The D2-branes become M2-branes, whereas the KK monopole

associated with the x6 circle remains unchanged. Normally a D6-brane would lift to a

KK monopole associated with the x♯ circle, hence the KK monopole with D6-brane flux

becomes a KK monopole associated with a circle on the (6, ♯) torus. Notice that the two

5-branes in the type IIB picture (i.e. the NS5-brane and the (1, k)5-brane) lift to pure

geometry in M-theory.

The spacetime is now R1,2 × X8, where the M2-branes are extended along R
1,2 and

X8 is the spacetime generated by the KK monopoles. The space X8 preserves 3/16 of the

32 supersymmetries of M-theory. (Adding the M2-branes (with the right orientation) does

not break any additional supersymmetries.) We thus expect the M2-branes’ worldvolume

theory to have N = 3 supersymmetry.

The enhancement of supersymmetry that we saw in the field theory occurs when we

take a “near-horizon” limit, which we define as follows. At the intersection point of the two

KK monopoles, the singularity of the space X8 is locally C4/Zk. Denoting the complex

coordinates of C4 by zi, the action of the Zk is zj → e2πi/kzj . The “near-horizon” limit
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means retaining only the C4/Zk singularity of the full X8 space. We will often refer to this

as “zooming in” on the singularity. C4/Zk preserves 12 supersymmetries, or 3/8 of the

32 supersymmetries of M-theory. We write the metric of X8, and take the “near-horizon”

limit, explicitly in appendix B.

12 real supercharges is of course the correct amount for a (2+1)-dimensional N = 6

supersymmetric theory. Recall also that the moduli space of the N = 6 Chern-Simons-

matter theory is precisely C4/Zk. Furthermore, C4 ∼= R8 has an SO(8) isometry, of

which only SU(4) × U(1) remains after the Zk orbifold. These symmetries match the

SU(4)R × U(1)b symmetry of the N = 6 Chern-Simons theory. The central conclusion

of ref. [1] was therefore that the N = 6 superconformal U(Nc)k × U(Nc)−k Chern-Simons

matter theory of section 2.1 describes the low-energy dynamics of Nc coincident M2-branes

at the C4/Zk singularity.

Recalling that, in the field theory, the Zk acts on the bifundamentals as

(A1, A2, B
∗
1 , B

∗
2) → e2πi/k (A1, A2, B

∗
1 , B

∗
2), and also that they transform as a 4 of SU(4)R,

we can (roughly) identify
(

z1, z2, z3, z4
)

with (A1, A2, B
∗
1 , B

∗
2), where here Aa and Ba rep-

resent the bosonic components of the corresponding superfields. The U(1)b symmetry of

the field theory thus appears as a phase shift zi → eiαzi (which is equivalent to shifts in

the x♯ circle, as we show in appendix B).

2.4 The dual gravity theory

Consider Nc M2-branes at the C4/Zk singularity. If we take Nc → ∞, we can replace

the M2-branes with their near-horizon geometry, AdS4 × S7/Zk. The natural conjecture

then is that eleven-dimensional supergravity on AdS4 × S7/Zk is holographically dual to

the N = 6 supersymmetric U(Nc)k × U(Nc)−k Chern-Simons-matter theory at large Nc.

The AdS4 radius of curvature R is related to the ’t Hooft coupling λ = Nc/k and the

Chern-Simons level k as (with ℓp the eleven-dimensional Planck length),

R3

ℓ3p
= 4π

√

2kNc = 4πk
√

2λ. (2.8)

We can thus trust the M-theory description in the strong ’t Hooft coupling limit λ → ∞.

If we write the S7 as a circle fibration over CP3, then the Zk orbifold acts on the fiber

direction. The radius of the circle in Planck units is on the order of R/kℓp ∝ (Nck)
1/6/k,

so we can only trust the solution when Nc ≫ k5. In short, when Nc → ∞ such that

Nc ≫ k5 (which implies λ = Nc/k → ∞), the N = 6 supersymmetric U(Nc)k × U(Nc)−k

Chern-Simons-matter theory is dual holographically to eleven-dimensional supergravity on

AdS4 × S7/Zk.
When k5 ≫ Nc ≫ k, where again λ→ ∞, the circle becomes small and the appropriate

description is in terms of type IIA supergravity on the spacetime AdS4 ×CP3.

3 General analysis of probe flavor

In this section we discuss how to add flavor to the ABJM theory in general terms. We

first discuss the gravity analysis and then the field theory analysis. More specifically, we

explain in this section exactly what we compute on the gravity side and what we want to

compute on the field theory side.
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Type IIB Type IIA M theory codim wrapping SUSY SUSY (anti)

D1 D2 M2 2 0(7) 2 2

D3 D2 M2 0 0126 6 0

D3 D4 M5 1 01(37) 3 3

D3 D4 M5 1 01(38) 2 2

D3 D2 M2 2 0(34)6 2 2

D3 D2 M2 2 06(78) 2 2

D5 D6 KK 0 012(347) 2 2

D5 D6 KK 0 012(349) 4 2

D5 D6 KK 0 012789 6 0

D5 D4 M5 1 013456 3 3

D5 D4 M5 1 01(378)6 2 2

D5 D4 M5 1 01(389)6 3 3

D5 D6 KK 2 0(34)789 2 2

D7 D6 KK 0 0126(3478) 2 4

D7 D6 KK 0 0126(3479) 2 2

D7 D8 M9 1 01345789 3 3

Table 1. List of D-branes (extended along the coordinate axes) that we can add to the

type IIB construction while still preserving some supersymmetry. For more details, see the

accompanying paragraph.

Our general approach is to add flavor branes in the type IIB setup and follow what

happens to them, in both the gravity and field theory descriptions, in the construction

of the ABJM theory (T-duality, lift to M-theory, etc.). Why start with type IIB? The

main reason is that the brane description in type IIB provides an easy starting point for

constructing the field theory.

3.1 Gravity analysis

On the gravity side, we introduce flavor branes in the type IIB setup. To limit our search for

supersymmetric probes, we impose four constraints. First, we consider only D1-, D3-, D5-

and D7-branes. D(-1)-branes do not introduce flavor degrees of freedom on the D3-brane

worldvolume, and D9-branes are unstable without orientifold planes, so we will not consider

these cases. Second, we do not separate any probes from the D3-branes in overall transverse

directions. Third, when we consider multiple probes, i.e. Nf > 1, we do not separate them

from each other, so that they retain a U(Nf) symmetry. Fourth, we consider only probes

aligned along the coordinate axes. More generally the probe brane could be at an angle with

respect to these axes. We studied a few special cases of probes at angles (see appendix A)

and found that all such probes appeared to preserve as much as, or less, supersymmetry,

as the probes listed below, i.e. they never exhibit enhanced supersymmetry.

The counting of supercharges left unbroken by our probes in this background is a

straightforward exercise, the details of which appear in appendix A. The main result of

appendix A is table 1, which appears below. Table 1 lists the flavor Dp-branes we study,
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exactly where they are located in the type IIB setup, and the number of real supercharges

each Dp-brane preserves. Although for specific calculations we focused on the Dp-branes

listed in table 1, most of our comments in this section will be applicable more generally.

A very important fact (mentioned in appendix A) is that when k = 0, such that

the type IIB setup includes just NS5-branes and no (1, k)5-brane, all of our flavor branes

preserve 4 real supercharges, except for two cases that preserve 8 supercharges. The first

case preserving 8 supercharges is D3-branes along (0126), which are of course coincident

with the D3-branes whose low-energy dynamics we are interested in. The second case

preserving 8 supercharges is D5-branes along (012789), which were first studied in ref. [29].

For all cases, table 1 indicates the number of supercharges that remain unbroken after

forming the (1, k)5-brane.

The first column of table 1 lists the type of brane in the type IIB construction while the

second column lists the resulting type IIA description, obtained by T-dualizing in x6, and

the third column lists the M-theory description, obtained by lifting to eleven dimensions. A

type IIB D-brane that becomes a D6-brane in type IIA will lift to a KK monopole associated

with the M-theory circle, which we have indicated with “KK.” The fourth column lists the

codimension of the defect to which the flavor fields will be confined in the (2+1)-dimensional

Chern-Simons-matter theory. The fifth column indicates the directions in which the probe

brane is extended in the IIB construction. The SO(3) symmetry that acts simultaneously

on the directions (345) and (789) gives rise to other supersymmetric branes, related to the

ones in the table by SO(3) transformations. We have indicated this by (). For example, the

first brane could extend along (07), (08) or (09). The last two columns of the table indicate

the number of real supercharges preserved by the probe brane or anti-brane. Recall that

for codimension-zero branes the number of preserved supercharges must be even, but for

higher codimension the brane may preserve an odd number of real supercharges.

As reviewed in section 2.2, to go from the type IIB setup to M2-branes on C4/Zk,
we T-dualize in x6, lift to M-theory, and take the “near-horizon” limit. We can easily

determine what type of object the flavor Dp-branes become in M-theory: we obtain M2-,

M5-, and M9-branes or KK monopoles. More difficult to determine is the exact position

of the object on C4/Zk. To find that, we take the straightforward approach. We compute

explicitly the coordinate transformations from the type IIB coordinates to the coordinates

(z1, z2, z3, z4) of C4/Zk. We present the details of the computation in appendix B. Given

the embedding of a Dp-brane in type IIB, we can then immediately write the embedding

of the corresponding object in M-theory on C4/Zk.
Once we know the location of the M-brane or KK monopole in C4/Zk, we can compute

the amount of supersymmetry and the isometries that the object preserves. The details of

those calculations, for a subset of our examples, appear in appendix C.1. Our results are

summarized in table 3 in appendix C.1. The locations of our objects on C4/Zk are more

complicated to explain, however, so we will not reproduce table 3 here. We also studied a

few examples of M-branes or KK monopoles in the near-horizon geometry of very many M2-

branes, AdS4 ×S7/Zk. The details of those calculations appear in appendix C.2. Knowing

what symmetries the object preserves is, of course, extremely helpful when constructing

the dual field theory.
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In our analysis of objects on C4/Zk, we make use of a helpful tool, originally used in

ref. [32], which we call “SU(4) equivalence.” The basic idea is that two different Dp-branes

in type IIB can become the same object in M-theory on C4/Zk. More specifically, two Dp-

branes of different dimensionality and/or located in different places in the type IIB setup

(and hence possibly preserving different symmetries) can actually become the same object

in M-theory. At work here is the “near-horizon” limit, which “erases” many of the details

of the type IIB embedding.7 To be still more precise, the two Dp-branes can become the

same type of object, two M5-branes for example, but located in two different places, i.e.

with two different embeddings into C4/Zk. If we can rotate one object into the other via

an SU(4) isometry, however, then the two objects are physically equivalent. We may thus

work with either one, and any physical results will be valid for both. On a technical level,

some things may be easier to calculate for one embedding than for the other, for example

the calculation of the number of preserved supercharges. We will present some explicit

examples of SU(4) equivalence, and discuss its field theory meaning, in section 8.

3.2 Field theory analysis

Eleven-dimensional supergravity on AdS4×S7/Zk is dual to the ABJM theory with Chern-

Simons level k, and Nc large (such that Nc ≫ k5). What is the dual field theory when we

add one of our flavor M-branes or KK monopoles, however? If the object preserves a large

amount of symmetry, then that symmetry may be enough to determine the form of the

field theory action. That will not always be the case, of course, so we want a more general

method to determine the field theory. We will now describe a general “recipe,” one that

is actually very straightforward and, in principle at least, is guaranteed to give the correct

field theory for any flavor Dp-brane in the type IIB setup. Our recipe actually begins a

few steps “before” the type IIB setup. We begin with D3-branes alone (so no NS5- or

(1, k)5-branes) and flavor Dp-branes. The recipe then consists of four steps, as follows.

Step 1: Construct the D3/Dp theory. In type IIB consider D3-branes alone in flat

space, so let x6 be non-compact and remove the NS5- and (1, k)5-branes. We then add

supersymmetric flavor Dp-branes. In general, we next need to determine the low-energy

theory “living” on the D3-branes, including the couplings to the (defect) flavor fields. We

will generically call that theory “the D3/Dp theory.” Fortunately, for many examples

the D3/Dp theory is already known. The following table lists various D3/Dp systems

for which the field theory has been determined explicitly. The first column indicates the

D3/Dp system. The second column indicates the number of Neumann-Dirichlet (ND)

directions. The third column indicates the dimension of the intersection (the subspace

of the D3-brane worldvolume in which the flavor fields propagate). The fourth column

lists references in which the D3/Dp theory is written explicitly. All of the systems listed

preserve 8 real supercharges. To our knowledge, as of this writing the table below represents

a complete list of D3/Dp systems for which the field theories have been written explicitly

in the published literature.

7That of course was an essential feature in the brane construction of the ABJM theory: the “erasure”

produced the (super)symmetry enhancement.
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D3/Dp # ND Intersection Reference(s)

D3/D7 4 (3+1) [16]

D3/D5 4 (2+1) [18, 19]

D3/D3 4 (1+1) [24]

D3/D7 8 (1+1) [26–28]

D3/D5 8 (0+1) [25]

Every Dp-brane in table 1 is described by one of the theories above, except for the

D3/D1 system. Recall that if the D3/Dp intersection has 4 Neumann-Dirichlet (ND)

directions then the corresponding flavor fields (from 3-p and p-3 strings) will produce non-

chiral flavor, simply because the fields are arranged in hypermultiplets [44], whereas with 8

ND directions we can obtain chiral flavor, as occurs for the 8 ND D3/D7 intersection [26–28].

Step 2: Add the NS5-branes. Now we ask what happens when we construct the ABJM

theory from the D3-branes. First we introduce the NS5- and NS5′-branes along (012345)

and separated in x6 (which for now is still non-compact), and let the D3-branes end on

them in x6. From a field theory point of view, adding the NS5-branes has two effects. The

first effect is that on the D3-brane worldvolume the x6 direction is now finite in extent, so

the low-energy effective theory on the D3-brane worldvolume will be a (2+1)-dimensional

field theory. In other words, we must perform a dimensional reduction in the x6 direction.

The (3+1)-dimensional N = 4 multiplet decomposes into two (2+1)-dimensional N = 4

multiplets, a vector multiplet and a hypermultiplet. The second effect of the NS5-branes is

to impose boundary conditions that “kill” (i.e. set to zero) the adjoint (2+1)-dimensional

N = 4 hypermultiplet [29, 30]. We will call these “the NS5-brane boundary conditions.”

We must thus take the D3/Dp action we wrote in Step 1 and perform a dimensional

reduction in x6 and then determine what couplings remain after we impose the NS5-brane

boundary conditions.

For this procedure, a crucial distinction is whether the flavor Dp-brane is extended in

x6 or not. If not, then we need only dimensionally reduce and impose boundary conditions

on the fields of the (3+1)-dimensional N = 4 supersymmetric Yang-Mills theory. If the

flavor Dp-brane is extended in x6, then we must also perform a dimensional reduction and

impose boundary conditions on the flavor fields. In this paper we study examples in which

we can avoid doing these operations explicitly.

We will also mention an alternative, but entirely equivalent, way to perform Step 2,8

namely to perform two T-dualities, one along x6 and another along one of the directions

3, 4 and 5 (along the NS5-branes but transverse to the D3-branes). Strictly speaking, here

we must assume that x6 is compact, and that we have two stacks of D3-branes, giving rise

to two U(Nc) gauge groups, as in the type IIB construction of the ABJM theory. The

NS5-branes ultimately become the orbifold space C2/Z2 ×C, the D3-branes become D3-

branes located at the orbifold singularity, and the flavor branes become some Dq-branes

(with q = p, p+ 2, or p− 2), which may be wrapping some part of C2/Z2 ×C [45–47]. We

can then use well-known machinery for studying D-branes on orbifolds (see refs. [45–48]

and references therein) to determine the field theory.

8We thank Ingo Kirsch for mentioning this alternative approach to us.

– 14 –



J
H
E
P
1
1
(
2
0
0
9
)
1
2
5

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory. Now we

compactify x6 and add another stack of D3-branes, so that the gauge group of the D3-

branes’ worldvolumes is U(Nc) × U(Nc). If the flavor Dp-brane is localized in x6, then

in this paper we will always introduce two stacks of flavor Dp-branes, each with Nf Dp-

branes, located at opposite sides of the x6 circle, away from the NS5-branes. We will thus

obtain open strings stretched from each stack of Dp-branes to the corresponding stack of

D3-branes, and hence we obtain massless fields in the fundamental representation of each

gauge group factor. We then introduce the k D5-branes along (012349), bind them to

the NS5′-brane to form a (1, k)5-brane, and then rotate the (1, k)5-brane. None of these

operations affect the form of the action in our flavor sector: they correspond to adding

additional flavor fields, which then acquire mass terms and are integrated out, producing

the Chern-Simons terms. The action in our flavor sector (i.e. the coupling to adjoint fields,

coming from 3-p and p-3 strings) is unchanged.9 We then T-dualize to type IIA and lift to

M-theory. The action in the flavor sector is unchanged in those two steps. In particular,

notice that the symmetries will be unchanged. We thus arrive in M-theory on the manifold

X8 mentioned in section 2.3.

Step 4: Take the low-energy limit. In the supergravity description, the last step is to

“zoom in” on the C4/Zk singularity of X8, which appears in the field theory description as

a low-energy limit. More precisely, we are doing effective field theory: we want to write a

theory valid on scales below the mass of the N = 4 vector multiplet, g2
YMk/(4π). Following

the rules of effective field theory, in the low-energy action we must write all terms consistent

with the symmetries, which in particular means supersymmetry and R-symmetry. If we

can determine the coefficients of these terms (using for example supersymmetry), then

the action we obtain is the correct action of the theory. Furthermore, as in the ABJM

theory, to determine whether a (super)symmetry enhancement occurred, a helpful step is

to integrate out the fields Φi. We emphasize that integrating out the Φi does not change

the theory, however. The equations of motion for the Φi’s are simply algebraic constraints:

the theory already has whatever symmetry it has before we formally integrate out the Φi’s.

Our recipe has advantages and disadvantages. Let us first consider the advantages.

One advantage is the fact that, in principle at least, our recipe is guaranteed to produce

the correct field theory. Another advantage is the fact that the input for our recipe is a

known D3/Dp theory, that is, our recipe is a kind of “machine” that takes a known D3/Dp

theory and outputs the field theory for flavor fields coupled to the ABJM theory. Notice

also that the action we obtain in the flavor sector will generally be valid for all values of Nc

9We can make a more direct argument for why these operations do not affect our flavor action, for flavor

Dp-branes not extended along x6. We can start with the D3/Dp intersection and immediately add an NS5-

brane and the (1, k)5-brane. Once again, we first do a dimensional reduction to (2+1) dimensions. We then

impose a boundary condition for the NS5-brane and a separate boundary condition for the (1, k)5-brane.

Together these set to zero the N = 4 hypermultiplet and introduce a Chern-Simons term [29, 30, 43]. In

these operations, the only changes in the flavor sector are the same that occur with just NS5-branes: some

couplings are eliminated when the boundary conditions set adjoint fields to zero. Otherwise the action in

the flavor sector does not change. For flavor Dp-branes extended along x6, more work may be required to

determine the effect of the (1, k)5-brane boundary condition on the flavor fields, along the lines of ref. [30].
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and k, although we will primarily be interested in the limits where gauge-gravity duality

is under best control (such as Nc ≫ k5).

Now let us consider some disadvantages. Although in principle our recipe is guaranteed

to work, in practice some of the steps can be difficult. Indeed, having studied many of the

Dp-branes listed in table 1, we can say from experience that Steps 2 and 4 often present

technical challenges, especially in cases where the flavor fields are confined to a defect.

In Step 2 for example, for defect flavor fields, näıvely imposing the NS5-brane bound-

ary conditions often leaves us with field content that does not easily fit into simple rep-

resentations of the defect’s supersymmetry group. (We know what supersymmetry the

system should have from the gravity analysis.) In such cases, a more rigorous analysis

of supersymmetry-preserving boundary conditions, along the lines of ref. [30], may be re-

quired. We will see an example of this in section 6.

As for Step 4, several special issues arise. Step 4 often requires careful analysis of

supersymmetric non-renormalization theorems. In the ABJM construction (without fla-

vor), we begin with an N = 3 supersymmetric Yang-Mills-Chern-Simons-matter theory.

An important feature of N = 3 supersymmetry is that the action is fully determined by

the symmetry [40]. That means that the low-energy limit consists only of discarding the

kinetic terms for the N = 4 vector multiplet (while leaving the Chern-Simons terms). The

action cannot change otherwise, for example the superpotential cannot acquire new terms,

and the Kähler potential cannot be renormalized. When we add defect flavor, however, the

Lorentz symmetry of the ABJM theory is broken to the subgroup that leaves the defect

invariant, and the amount of supersymmetry is also reduced. In such cases a prerequisite

for Step 4 is to re-examine non-renormalization theorems for defect theories. For the de-

fect field theories corresponding to the D3/D5 and D3/D3 intersections ((3+1)-dimensional

N = 4 SYM with defect flavor), proofs of non-renormalization appear in refs. [19, 24]. Our

examples in sections 4 and 5 have enough symmetry to avoid this issue.

Step 4 also involves integrating out the fields Φi. For codimension-zero flavor fields that

is usually straightforward. If our flavor fields are codimension one or two, however, this pro-

cedure is more difficult. In particular, we would need to decompose the (2+1)-dimensional

fields of the ABJM theory into lower-dimensional multiplets, and then integrate out the

lower-dimensional fields corresponding to the Φi.

A useful strategy for Step 4 is to “work backwards,” that is, to use symmetries of

the gravity description to guess the final result. In other words, given the symmetries on

the gravity side, we can write all possible terms consistent with those symmetries in the

field theory. In cases where a symmetry enhancement occurs, we must demonstrate that

these are all the terms allowed by the original symmetry, so that we “retroactively” justify

the result.

Lastly, let us explain the field theory meaning of SU(4) equivalence. On the gravity

side, SU(4) equivalence was the statement that two Dp-branes in the type IIB setup, which

may be located in different places or even have different dimensionality (but which must

have the same codimension in (2+1) dimensions) become the same type of object in M-

theory on C4/Zk, where the embeddings of the the two objects are related by an SU(4)

isometry transformation. In the field theory what is happening is simply that two different
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theories, with different symmetries for example (including possibly different amounts of

supersymmetry), flow to the same low-energy fixed point in Step 4. We will discuss that

further, and present an explicit example, in section 8.

To illustrate various features of our recipe, we now turn to several examples.

4 Codimension zero N = 3 Supersymmetric Flavor

In this section we study codimension-zero N = 3 supersymmetric flavor fields, which have

already been studied in refs. [32, 36, 37]. For us this section serves as a particularly nice

illustration of our general recipe. Compared to other examples, however, this example

lacks many interesting features. For example, no supersymmetry enhancement occurs in

the “near-horizon” limit, as we will review.

4.1 Supergravity with KK-monopoles/D6-branes

To obtain codimension-zero N = 3 supersymmetric flavor, we follow refs. [32, 36, 37], and

add D5-branes extended along (012789) in the type IIB setup. We are free to choose their

position on the x6 circle. We will add two stacks of D5-branes, each with Nf coincident

D5-branes, on opposite sides of the circle, away from the NS5-brane and (1, k)5-brane. The

strings from the D5-branes to the two stacks of D3-branes thus introduce massless flavor

in both gauge groups. As shown in table 1 in section 3.1, these D5-branes preserve 6 real

supercharges in the type IIB setup.

After T-duality in x6 the D5-branes become D6-branes. The 2Nf D6-branes are coin-

cident, and have a U(2Nf) symmetry broken to U(Nf)×U(Nf) by a Z2-valued Wilson line,

as explained in ref. [32]. (The Wilson line simply tells us where the D5-branes were in type

IIB.) After uplift to M-theory and the “near-horizon” limit, the D6-branes become KK

monopoles associated with the x♯ circle in M-theory on C4/Zk. The authors of ref. [32]

argue that the embedding of the KK monopole is described by the equations z1 = z̄3,

z2 = z̄4 in C4/Zk. The authors of ref. [32] then showed that, by using the SU(4) symmetry

of C4/Zk, we can map this embedding to Im(zi) = 0,∀i. In other words, the two embed-

dings are SU(4) equivalent. The symmetries preserved by the KK monopoles are easier

to see in the latter embedding, however. In the latter embedding, the KK monopoles are

extended along (012) and Re(zi),∀i.
The circle direction associated with the KK monopoles corresponds to the U(1)b

symmetry of the background, so the KK monopoles preserve this symmetry. The KK

monopoles break the SU(4) symmetry to an SO(4) under which (z1, z2, z3, z4) transforms

as a 4. The total symmetry group that the KK monopoles preserve is SO(4) × U(1)b =

SU(2) × SU(2) × U(1)b [32, 36, 37]. In appendix C.1 we find that the KK monopoles

preserve 6 real supercharges.

If we take Nc → ∞, we can replace the M2-branes by their near-horizon geometry,

which is AdS4 × S7/Zk. The KK monopoles are extended along AdS4 and wrap a three

cycle in S7/Zk. In appendix C.2 we analyze the κ-symmetry condition for these monopoles

and find that after the near-horizon limit the number of preserved supercharges has dou-

bled to 12.
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For large k, such that k5 ≫ Nc and the appropriate description is type IIA on AdS4 ×CP3, the monopoles become D6-branes wrapping AdS4 ×RP3 [32, 36, 37].

To summarize: as explained in refs. [32, 36, 37], in the type IIB setup we can add

D5-branes that produce fundamental matter for both gauge group factors. These become

KK monopoles in M-theory on C4/Zk. These KK monopoles preserve 6 real supercharges,

so we expect a dual field theory with N = 3 superconformal symmetry. The corresponding

R-symmetry group has to be SO(3), which fits into the symmetry found above. We now

proceed to review the dual field theories constructed in refs. [32, 36, 37], and check that it

has the right symmetries and amount of supersymmetry.

4.2 The field theory

We will first review the theory described in refs. [32, 36, 37], and then “re-derive” it using

our recipe.

In the type IIB setup we introduce two stacks of Nf coincident D5-branes along

(012789) on opposite sides of the x6 circle. These D5-branes preserve the N = 3 su-

persymmetry of the type IIB setup (see appendix A). The strings stretched between each

stack of D3-branes and each stack of D5-branes will produce N = 2 chiral superfields trans-

forming in the U(Nf) and U(Nc) representations (N̄f , Nc) and (Nf , N̄c) of each U(Nc). We

will denote these as Qi and Q̃i, respectively, where again i labels the gauge group, i = 1, 2.

The field Q1, for example, transforms in the N̄f representation of U(Nf) and the Nc repre-

sentation of the “first” (i = 1) U(Nc) gauge group, while Q̃1 transforms in the conjugate

representations, Nf and N̄c. For notational simplicity, we will suppress flavor indices.

N = 3 supersymmetry completely determines the action [40]. The kinetic terms of the

flavor fields are

Sfund = −
∫

d3x d4θ
(

Q̄ie
−ViQi + Q̃ie

Vi ¯̃Qi

)

. (4.1)

Here we have left summation over i implicit. The superpotential now has extra terms,

W = − k

8π
Tr
(

Φ2
1 − Φ2

2

)

+ Tr (BaΦ1Aa) + Tr (AaΦ2Ba) + Q̃1Φ1Q1 − Q̃2Φ2Q2. (4.2)

At low energy we again integrate out Φ1 and Φ2, which gives

W =
2π

k
Tr

[

(

AaBa +Q1Q̃1

)2
−
(

BaAa −Q2Q̃2

)2
]

. (4.3)

Now let us derive the action above using our recipe.

Step 1: Construct the D3/D5 theory. We return to type IIB and consider D3-branes

alone in flat space, so for now let x6 be non-compact and remove the NS5- and (1, k)5-brane.

We then add Nf flavor D5-branes, which intersect the D3-branes in (2+1) dimensions. This

D3/D5 intersection has 4 ND directions and preserves 8 real supercharges.

The D3/D5 theory was constructed in refs. [18, 19]. In the flavor sector we have two

N = 2 chiral superfields (which comprise an N = 4 hypermultiplet), which of course

propagate only in (2+1) dimensions. In the adjoint sector, we start with the theory on

the D3-branes, (3+1)-dimensional N = 4 SYM theory. The (3+1)-dimensional N = 4
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multiplet decomposes into two (2+1)-dimensional N = 4 multiplets, a vector multiplet and

a hypermultiplet. The (2+1)-dimensional N = 4 vector multiplet then further decomposes

into an N = 2 vector multiplet and an N = 2 chiral multiplet. The kinetic term for the

flavor fields is then precisely the one above, i.e. the flavor fields have the standard coupling

to the N = 2 vector superfield. The superpotential is also precisely the one above (at least,

the terms involving the flavor fields are the same), i.e. a coupling to the adjoint N = 2 chiral

superfield from the N = 4 vector multiplet. (See for example eq. (4.7) in ref. [19].) The

entire action preserves N = 4 supersymmetry, that is, 8 real supercharges. We emphasize

that the flavor fields do not couple to the (2+1)-dimensional N = 4 hypermultiplet at all.

Step 2: Add the NS5-branes. We add the NS5-brane and NS5′-brane along (012345)

and separated in x6 (which for now is still non-compact), and let the D3-branes end on

them in x6. We first perform a dimensional reduction in x6, which does not affect the

flavor action in this case (since it is already (2+1)-dimensional). The NS5-brane boundary

conditions set to zero the (2+1)-dimensional N = 4 hypermultiplet. As we mentioned,

however, the flavor fields do not couple to the N = 4 hypermultiplet, so this step actually

has no effect on the action in the flavor sector. The theory retains N = 4 supersymmetry.

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory. Now

we compactify x6 and add another stack of D3-branes, so that the gauge group of the D3-

branes’ worldvolumes is U(Nc)×U(Nc), and another stack of Nf D5-branes. We thus obtain

two sets of flavor fields, the Qi and Q̃i, with i = 1, 2, mentioned above, and correspondingly,

two copies of the defect action. As we argued in section 3, forming the (1, k)5-brane and

lifting to M-theory does not change the defect action. The action acquires Chern-Simons

terms, however, which break the supersymmetry to N = 3.

Step 4: Take the low-energy limit. Lastly, we must take the low-energy limit, which

means writing all terms consistent with the symmetries of the field theory. Our theory has

N = 3 supersymmetry. As mentioned above, N = 3 supersymmetry completely determines

the form of the action [40]. The flavor action thus remains the same, and hence we arrive

at eqs. (4.1) and (4.2). The very last step is to integrate out the Φi, as we did above, the

result being eq. (4.3).

Once we have the result for the field theory action, we must ask whether any sym-

metry enhancement occurred in the low-energy limit, as happened in the ABJM theory

without flavor.

Inspecting the superpotential above, we can see that the theory retains the U(1)b
“baryon number” symmetry under which Aa → eiαAa and Ba → e−iαBa. The theory

additionally has a global U(Nf) × U(Nf) flavor symmetry, of which the overall, diagonal

U(1) (usually also called “baryon number”) acts as Qi → e−iβQi and Q̃i → eiβQ̃i.

From the superpotential in eq. (4.3) we can also see that codimension-zero flavor breaks

the SU(2)A×SU(2)B symmetry to the diagonal subgroup that leaves invariant the product

of fields AaBa. If we perform SU(2)A and SU(2)B transformations,
(

A1

A2

)

→ eimjσj

(

A1

A2

)

,

(

B1

B2

)

→ einjσj

(

B1

B2

)
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where mj and nj are the parameters of the transformation, and the σj are the Pauli

matrices (j = 1, 2, 3), then we have

AaBa =
(

A1, A2

)

(

B1

B2

)

→
(

A1, A2

)

eimjσ
T
j einjσj

(

B1

B2

)

eimjσ
T
j einjσj = 12 + imjσ

T
j + injσj + . . .

= 12 + i(m1 + n1)σ1 + i(−m2 + n2)σ2 + i(m3 + n3)σ3) + . . .

where we have expanded the exponentials, 12 stands for the 2 × 2 identity matrix, and

. . . stands for terms of higher order in mj and nj. By demanding that the terms linear in

mj and nj vanish, we find that only the subspace of the SU(2)A × SU(2)B algebra where

n1 = −m1, n2 = m2 and n3 = −m3 leaves AaBa, and hence the superpotential, invariant.

We will denote this diagonal subgroup SU(2)D.

The theory also has N = 3 supersymmetry and hence retains the SU(2)R symmetry,

under which (A1, B
∗
1), (A2, B

∗
2), and

(

Qi,
¯̃Qi

)

transform as doublets. In the ABJM theory

without flavor, the superpotential exhibited the symmetry SU(2)A × SU(2)B, which does

not commute with SU(2)R. The conclusion was that in fact the full R-symmetry was SU(4),

and hence the theory had N = 6 supersymmetry, as we reviewed in section 2.1.

The crucial question is thus whether or not SU(2)R and the SU(2)D subgroup of

SU(2)A × SU(2)B commute. As mentioned in refs. [32, 36, 37], they do commute, as

we will now show explicitly.10 Let the 4 × 4 matrices δRj = iσj ⊗ 12 and

δAj =

(

iσj 02

02 02

)

, δBj =

(

02 02

02 −iσ∗j

)

,

represent the generators of SU(2)R, SU(2)A and SU(2)B that act on the vector

(A1, A2, B
∗
1 , B

∗
2). Here 02 represents the 2 × 2 null matrix. We then find

[

δR1 , δ
A
j

]

= iσ2 ⊗ σj ,
[

δR2 , δ
A
j

]

= −iσ1 ⊗ σj ,
[

δR3 , δ
A
j

]

= 0 ,
[

δR1 , δ
B
j

]

= iσ2 ⊗ σ∗j ,
[

δR2 , δ
B
j

]

= −iσ1 ⊗ σ∗j ,
[

δR3 , δ
B
j

]

= 0 .

and hence we immediately find that the subgroup SU(2)D commutes with SU(2)R:
[

δRj , δ
A
1 − δB1

]

=
[

δRj , δ
A
2 + δB2

]

=
[

δRj , δ
A
3 − δB3

]

= 0.

The SU(2)R is therefore not enhanced, so the system has only N = 3 supersymmetry.

To summarize: classically the theory has N = 3 superconformal symmetry, with

bosonic subgroup SO(3, 2), and global symmetry SU(2)R×SU(2)D×U(1)b×U(Nf)×U(Nf )

which matches perfectly with the symmetries in the supergravity description above.

As this case was a rather trivial example of our recipe, we now turn to slightly more

involved examples, in particular, examples that exhibit supersymmetry enhancement.

10The fact that SU(2)R and SU(2)D commute is a familiar feature of SU(4). The SU(4) algebra has two

obvious SU(2) × SU(2) sub-algebras, whose diagonal SU(2)’s commute with one another. In the ABJM

theory these are SU(2)A×SU(2)B, with diagonal SU(2)D, and SU(2)1×SU(2)2, with diagonal SU(2)R. Here

SU(1)1 acts on (A1, B
∗

1 ) as a doublet and leaves (B∗

2 , A2) invariant, while for SU(2)2 (A1, B
∗

1 ) is invariant

and (B∗

2 , A2) is a doublet.
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5 Codimension one N = (0, 6) Supersymmetric Flavor

In this section and the next we study two different probe branes that introduce codimension-

one flavor fields, that is, flavor fields propagating in a (1+1)-dimensional subspace of

the (2+1)-dimensional ABJM theory. The branes we study, a D7/D8/M9-brane and a

D3/D4/M5-brane, were first studied in type IIA on AdS4 ×CP3 in ref. [34]. We review

and extend the gravity results of ref. [34], and write the dual field theory Lagrangian

explicitly for the D7/D8/M9-brane.

In (1+1) dimensions the supersymmetries divide into left- and right-handed sectors.

We begin in this section with a chiral codimension-one theory, which preserves N = (0, 6)

supersymmetry. In the next section we study non-chiral flavor.

5.1 Supergravity with M9/D8-brane probes

We begin by adding D7-branes extended along (01345789) in the type IIB setup. We are

free to choose their position on the x6 circle. We will add two stacks of D7-branes, each

with Nf coincident D7-branes, on opposite sides of the circle, away from the NS5-brane

and (1, k)5-brane. The strings from the D7-branes to the two stacks of D3-branes

introduce massless flavor in both gauge groups. (In contrast, the authors of ref. [34]

considered matter fields that coupled only to a single gauge group.) Notice also that the

D7-branes and D3-branes have 8 ND directions, hence the flavor fields will be chiral, as

we mentioned in section 3.2. As shown in table 1 in section 3.1, these D7-branes preserve

3 real supercharges in the type IIB setup.

After T-duality in x6 the D7-branes become D8-branes. The 2Nf D8-branes are coin-

cident, and have a U(2Nf) symmetry broken to U(Nf)×U(Nf) by a Z2-valued Wilson line

(similar to what happened in section 4.1). After uplift to M-theory and the “near-horizon”

limit, the D8-branes become M9-branes extended along (01) and along all of C4/Zk. Ob-

viously the branes preserve the full SU(4) × U(1)b symmetry of C4/Zk. In appendix C.1

(see also ref. [34]) we find that the M9-branes preserve 6 real supercharges.

If we take Nc → ∞, we can replace the M2-branes by their near-horizon geometry,

which is AdS4×S7/Zk. The M9-branes are extended along AdS3 inside AdS4 and wrap all

of S7/Zk. In appendix C.2 we analyze the κ-symmetry condition for these branes and find

that after the near-horizon limit the number of preserved supercharges has doubled to 12.

For large k, such that k5 ≫ Nc, the M9-branes reduce to D8-branes in type IIA that

wrap AdS3 ×CP3. These probe D8-branes were first studied in ref. [34].

To summarize: in the type IIB setup we can add D7-branes that produce fundamental

matter for both gauge group factors. They have 8 ND directions (with respect to the

D3-branes), so the flavor fields will be chiral. These D7-branes become M9-branes in M-

theory on C4/Zk. These M9-branes preserve 6 real supercharges, so we expect a dual field

theory with (in (1+1)-dimensional notation) N = (0, 6) superconformal symmetry. The

corresponding R-symmetry group must be SU(4) ∼= SO(6), which fits into the symmetry

of the brane construction. We now proceed to construct the dual field theory and check

that is has the right symmetries and amount of supersymmetry.
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5.2 The field theory

Let us apply our recipe.

Step 1: Construct the D3/D7 theory. Once again we consider a single stack of D3-

branes alone in flat space (so again let x6 be non-compact and remove the NS5-brane and

(1, k)5-brane), and add a codimension-two D7-brane. Such a D3/D7 intersection has 8 ND

directions and preserves 8 real supercharges. What is the field theory for such a D3/D7

intersection? This question was answered11 in refs. [26–28]. With 8 ND directions, the NS

sector zero-point energy is 1/2, so the ground state is in the Ramond sector. What survives

the GSO projection is a single Weyl spinor confined to the (1+1)-dimensional intersection,

transforming in the (Nc, N̄f ). We thus obtain chiral flavor. Our Weyl fermion will be

left-handed.

The immediate question is: with only fermions in the ground state, how can the theory

be supersymmetric? The answer is that all of the preserved supercharges are right-handed.

The theory has (1+1)-dimensional N = (0, 8) supersymmetry. The flavor fermions are

completely inert under both supersymmetry and the R-symmetry.

The action is then remarkably simple. From the D3-branes we of course have the

(3+1)-dimensional N = 4 U(Nc) SYM theory action. For the defect flavor fields, the claim

of refs. [26–28] is that the only marginal and gauge-invariant terms that respect all of the

symmetries are

Sfund =

∫

dx+dx− ψ†
q (i∂− −A−)ψq, (5.1)

where we have used (1+1)-dimensional coordinates x± = x0 ± x1, ψq is our left-handed

Weyl fermion, and A− is the restriction of the ambient U(Nc) gauge field to the defect.

Of crucial importance is the fact that A− is inert under N = (0, 8) supersymmetry

transformations [26–28].

Step 2: Add the NS5-branes. We add the NS5-brane and NS5′-brane along (012345)

and separated in x6 (which for now is still non-compact), and let the D3-branes end on

them in x6. The NS5-brane boundary conditions set to zero the (2+1)-dimensional N = 4

hypermultiplet. The flavor fields only couple to the gauge field, however, so adding the

NS5-branes does not alter the action in the flavor sector. The supersymmetry is reduced

to N = (0, 4), however.

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory. We com-

pactify x6 and add another stack of D3-branes, so that the gauge group of the D3-branes’

worldvolumes is U(Nc)×U(Nc), and another stack of Nf D7-branes. We obtain two sets of

flavor fields, which we will denote as ψiq with i = 1, 2. We obtain two copies of the action

above, one for each ψiq. The rest of the construction (forming the (1, k)5-brane, T-duality,

etc.) also leaves the action in the flavor sector untouched. The Chern-Simons terms break

the supersymmetry to N = (0, 3).

11Much of the analysis of refs. [26–28] focused on what we would call “back-reaction,” that is, effects that

result from leaving the probe limit. Strictly speaking, all of our statements apply only in the probe limit.
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Step 4: Take the low-energy limit. Lastly, we must take the low-energy limit, which

means writing all terms consistent with the symmetries of the field theory. Let us review the

symmetries of the theory at the end of Step 3. Our theory has N = (0, 3) supersymmetry

and the corresponding SU(2)R R-symmetry. (The SU(2)R is easy to see in the type IIB

setup, being exactly the same SU(2)R, which rotates (345) and (789) simultaneously, that

appears in the theory without flavor.) The theory also has a baryon number symmetry

that shifts the phase of ψiq and leaves all other fields invariant. Recall also that the theory

of course has (1+1)-dimensional Lorentz invariance and gauge invariance. We will now

argue that in fact these symmetries forbid any new (relevant or marginal) terms.

First let us do some dimension counting. The fields ψq are (1+1)-dimensional fermions,

hence they are dimension 1/2. (We will drop the i index on ψiq for now.) We must also con-

sider the restriction of the (2+1)-dimensional fields to (1+1) dimensions. We will use φ to

denote a generic (2+1)-dimensional scalar restricted to the defect, and Ψ to denote a (2+1)-

dimensional fermion restricted to the defect. φ is dimension 1/2 and Ψ is dimension 1.

Terms with an odd number of ψq and ψ†
q, whether relevant or marginal, are forbidden

by gauge invariance and by the U(1) baryon number that shifts the phase of ψq. Terms

with two ψq that are relevant include couplings to scalars, of the form φψ†
qψq, which is

dimension 3/2. These are forbidden by Lorentz invariance. ψq is a (1+1)-dimensional

left-handed fermion. Its conjugate ψ†
q is also left-handed, hence ψ†

qψq is not a Lorentz

singlet. Marginal couplings of the form φ2ψ†
qψq and Ψψ†

qψq, and the marginal quartic term

(ψ†
qψq)

2, are forbidden for the same reason. (We can also eliminate many such terms,

and/or linear combinations of them, using the R-symmetry and/or supersymmetry.) The

only term involving derivatives and/or the gauge field that is allowed by the symmetries is

the gauge-covariant kinetic term itself. The overall normalization of that term can change,

but of course such an overall constant can be removed by a rescaling of ψq.

Our conclusion is that the form of the defect action does not change in Step 4. We can

thus write the defect action easily. We have two Weyl fermions, ψiq, where again i = 1, 2

labels the gauge group, that is, under U(Nc)k × U(Nc)−k × U(Nf) × U(Nf) the ψ1
q fermion

transforms as (Nc,1, N̄f ,1) and the ψ2
q fermion transforms as (1, Nc,1, N̄f ). We add to

the ABJM action the terms

Sfund =

∫

dx+dx− ψi†q
(

i∂− −Ai−
)

ψiq, (5.2)

where here again Ai− are the defect values of the bulk gauge fields, and summation over i

is implicit.

We show in appendix D that A− is invariant under N = (0, 6) supersymmetry trans-

formations, hence the flavor action preserves N = (0, 6) supersymmetry. The action is also

trivially invariant under the full SU(4)R × U(1)b symmetry. These symmetries perfectly

match those of the brane construction.

6 Codimension one N = (3, 3) Supersymmetric Flavor

In this section we study codimension-one non-chiral flavor, that is, non-chiral flavor fields

propagating in a (1+1)-dimensional subspace of the (2+1)-dimensional ABJM theory. The
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flavor fields will have N = (4, 4) supersymmetry broken to N = (3, 3) supersymmetry

when the Chern-Simons level k ≥ 2. The flavor brane in this case is a D3-brane in type

IIB, a D4-brane in type IIA, and an M5-brane in M-theory. We perform our complete

supergravity analysis for these branes, for example, we compute the supersymmetry that

they preserve. We also comment on the structure of the field theory and explain in detail

the complications that arise in applying our recipe for the field theory.

6.1 Supergravity with M5/D4-brane probes

We begin by adding D3-branes extended along (0137) in the type IIB setup. We are free

to choose their position on the x6 circle. We will add two stacks of D3-branes, each with

Nf coincident D3-branes, on opposite sides of the circle, away from the NS5-brane and

(1, k)5-brane. The strings from the flavor D3-branes to the color D3-branes thus introduce

massless flavor in both gauge groups. (In contrast, the authors of ref. [34] considered matter

fields that coupled only to a single gauge group.) Notice also that the flavor D3-branes and

color D3-branes have 4 ND directions, hence the flavor fields will be non-chiral. As shown

in table 1 in section 3.1, these D3-branes preserve 3 real supercharges in the type IIB setup.

After T-duality in x6 the D3-branes become D4-branes. The 2Nf D4-branes are coin-

cident, and have a U(2Nf) symmetry broken to U(Nf)×U(Nf) by a Z2-valued Wilson line.

After uplift to M-theory and the “near-horizon” limit, the D4-branes become M5-branes

in M-theory on C4/Zk. Using the results of appendix B, we find that the embedding of

the M5-branes is described by the equations z1 = z2, z3 = z4. Here again we can use

an SU(4) transformation to produce new embedding equations that make the symmetries

transparent. Explicitly, the SU(4) transformation is

z1
new =

1√
2

(

z1 − z2
)

, z2
new =

1√
2

(

−z3 + z4
)

,

z3
new =

1√
2

(

z1 + z2
)

, z4
new =

1√
2

(

z3 + z4
)

. (6.1)

The embedding equation is then z1
new = z2

new = 0. The M5-branes are thus extended along

(01) and z3
new and z4

new.

For the embedding z1
new = z2

new = 0 we can easily see that the M5-branes breaks

the SU(4) symmetry of C4/Zk down to SU(2) × SU(2) × U(1) where the first SU(2) acts

on (z1, z2) and the second SU(2) acts on (z3, z4). The U(1) acts as (z1, z2, z3, z4) →
(eiαz1, eiαz2, e−iαz3, e−iαz4). We can also see that the embedding equations are invariant

under the U(1)b symmetry, zi → eiαzi, ∀i. We thus conclude that such branes preserve

the symmetry group SU(2) × SU(2) × U(1) × U(1)b. In appendix C.1, we find that with

the above embedding the M5-branes preserve 6 real supercharges (see also ref. [34]).

If we take Nc → ∞, we can replace the M2-branes by their near-horizon geometry,

which is AdS4 × S7/Zk. The M5-branes are now extended along AdS3 inside AdS4 and

wrap a three cycle in S7/Zk. In appendix C.2 we analyze the κ-symmetry condition for

these M5-branes and find (as expected) that after the near-horizon limit the number of

preserved supercharges has doubled to 12 (see also ref. [35]).
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As shown in ref. [34] (see also ref. [35]), when k is large, such that k5 ≫ Nc, the

M5-branes reduce to D4-branes in type IIA that wrap AdS3 ×CP1 in AdS4 ×CP3, whereCP1 is the unique two-cycle in CP3.

To summarize: in the type IIB setup we can add D3-branes that produce flavor fields

for both gauge group factors. These flavor fields will be non-chiral. The D3-branes become

M5-branes in M-theory on C4/Zk that preserve 6 real supercharges. We thus expect that

the flavor fields will preserve (1+1)-dimensional N = (3, 3) superconformal symmetry. The

corresponding R-symmetry group must be SO(3) × SO(3), which fits into the symmetry

group we found above. We now proceed to the dual field theory.

6.2 Comments about the field theory

Here we will again apply our recipe, although we will find some complications when we

add the NS5-branes in Step 2.

Step 1: Construct the D3/D3 theory. We start in type IIB in flat space (so x6 non-

compact and no NS5- or (1, k)5-brane) and introduce Nc color D3-branes that intersect Nf

flavor D3-branes in (1+1) dimensions. The table below shows the intersection.

0 1 2 3 4 5 6 7 8 9

Nc D3 • • • – – – • – – –

Nf D3 • • – • – – – • – –

The field theory for such a D3/D3 intersection was constructed in ref. [24]. The D3/D3

intersection has 4 ND directions, so the flavor fields are non-chiral. The full theory preserves

8 real supercharges. For this case, we have in the flavor sector two (1+1)-dimensional

N = (2, 2) chiral superfields Q and Q̃, which together form an N = (4, 4) hypermultiplet.

In the adjoint sector we must decompose the (3+1)-dimensional N = 4 multiplet

into (1+1)-dimensional multiplets. The full decomposition appears in ref. [24]. We write

the bosonic content, including auxiliary fields, in the table below. In our notation, the

superscript on the vector field Aµ indicates which components are included in the multiplet,

for example, A0126
µ indicates that A0, A1, A2 and A6 are included. Scalars are denoted by

the number of the corresponding direction in the type IIB construction. The subscript

on auxiliary fields indicates the spacetime dimensionality: D4 is the auxiliary field in a

(3+1)-dimensional vector multiplet, while D2 is the auxiliary field in a (1+1)-dimensional

vector multiplet. The superscript, a, b, or c, on the auxiliary fields F is simply a label to

distinguish them among each other (the superscript has no deeper meaning).

(3+1)d N = 4 V
(

A0126
µ , 345789,D4 , F

a
4 , F

b
4 , F

c
4

)

(1+1)d N = (4, 4) V
(

A01
µ , 4589,D2, F2

)

N = (4, 4) H
(

A2, A6, 37, F
a
2 , F

b
2

)

In (3+1) dimensions the N = 4 vector multiplet decomposes into an N = 1 vector

multiplet and three N = 1 chiral multiplets. The bosonic content is the vector field (with

components (0126)), the six scalars (345789) (transverse to the color D3-branes), the real
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auxiliary field D4 in the N = 1 vector multiplet, and three complex auxiliary fields F a4 ,

F b4 , and F c4 , from the three N = 1 chiral multiplets.

As shown ref. [24], the (3+1)-dimensional N = 4 vector multiplet reduces to, in

(1+1) dimensions, an N = (4, 4) vector multiplet and an N = (4, 4) hypermultiplet.

The N = (4, 4) vector multiplet includes the (01) components of the vector field, the four

scalars (4589) (transverse to both the color and flavor D3-branes), the real auxiliary field

D2 and the complex auxiliary field F2. Notice that the N = (4, 4) vector multiplet can be

decomposed into two N = (2, 2) multiplets, a vector multiplet and a chiral multiplet. D2 is

the auxiliary field in the N = (2, 2) vector multiplet, while F2 is the auxiliary in the chiral

multiplet. An important identification that we will use later is D2 = 1√
2

(D4 + F26) [24],

where F26 is the field strength in the (26) directions (along the color D3-branes but trans-

verse to the flavor D3-branes). The N = (4, 4) hypermultiplet includes four scalars, namely

the components A2 and A6 of the vector field and the scalars (37) (transverse to the color

D3-branes but along the flavor D3-branes).

The key point is that the defect flavor fields couple only to the N = (4, 4) vector

multiplet. As described in ref. [24], the easiest way to write the action is using N =

(2, 2) superspace. The kinetic term includes the usual coupling to the N = (2, 2) vector

superfield, and then a superpotential coupling to an N = (2, 2) chiral superfield provides

the completion to N = (4, 4) supersymmetry. The action is written explicitly in appendix

D of ref. [24].

At this stage the R-symmetry is SU(2) × SU(2) × U(1) × U(1) [24]. The two SU(2)’s

correspond to the SO(4) isometry that acts in the overall transverse directions (4589). The

first U(1) corresponds to rotations along the color D3-branes but transverse to the flavor

D3-branes, in the (26) plane. Similarly, the second U(1) corresponds to rotations transverse

to the color D3-branes but along the flavor D3-branes, in the (37) plane.

Step 2: Add the NS5-branes. We next add the NS5-brane and NS5′-brane. The

arrangement of branes is as follows (here we include explicitly only the NS5-brane):

0 1 2 3 4 5 6 7 8 9

Nc D3 • • • – – – • – – –

Nf D3 • • – • – – – • – –

NS5 • • • • • • – – – –

We need to impose the NS5-brane boundary conditions on the N = (4, 4) supersym-

metric defect action written in appendix D of ref. [24], that is, we need to know which

fields of the (1+1)-dimensional N = (4, 4) vector multiplet are killed by the NS5-brane

boundary conditions, and hence what couplings are eliminated in the defect action. The

relevant decomposition of fields from (3+1) dimensions to (2+1) and (1+1) dimensions is

as follows (the first and last lines are simply repeated from the similar table above):

As we have reviewed several times now, when the D3-branes end on the NS5-branes, the

(3+1)-dimensional N = 4 fields decompose into (2+1)-dimensional N = 4 fields, namely a

vector and a hypermultiplet. We have included that decomposition in the table above. The

boundary conditions set to zero the fields in the (2+1)-dimensional N = 4 hypermultiplet.
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(3+1)d N = 4 V
(

A0126
µ , 345789,D4 , F

a
4 , F

b
4 , F

c
4

)

(2+1)d N = 4 V
(

A012
µ , 345, F3,D3

)

N = 4 H
(

A6, 789, F
a
3 , F

b
3

)

(1+1)d N = (4, 4) V
(

A01
µ , 4589,D2, F2

)

N = (4, 4) H
(

A2, A6, 37, F
a
2 , F

b
2

)

In particular, A6 and the scalars (789) are all set to zero. That means that various parts

of the (1+1)-dimensional multiplets are set to zero. Specifically, in the N = (4, 4) vector

multiplet, the scalars (89) are set to zero.

A cursory analysis suggests that the coupling of the flavor fields is described by an N =

(2, 2) kinetic term alone, that is, that the NS5-brane boundary conditions eliminate the

superpotential of the D3/D3 theory and leave only the kinetic term. The argument goes as

follows. As mentioned in section 3.1 and appendix A, the brane intersection above preserves

4 real supercharges. The defect flavor fields obviously need a kinetic term, and are non-

chiral, hence we expect that the flavor action is the N = (2, 2) supersymmetric completion

of the kinetic term. Indeed, the N = (2, 2) vector multiplet includes the (01) components of

the vector field, two real scalars, and the real auxiliary field D2. The boundary conditions

leave two scalars, (45), untouched, which is nicely consistent. Furthermore, the action

seems to have the right symmetries. N = (2, 2) supersymmetry comes with a U(1) × U(1)

R-symmetry. In the brane description, with two NS5-branes, the flavor D3-brane obviously

preserves two U(1)’s, namely the independent rotations in (45) and (89).

When we look more closely at the auxiliary fields, we find that the auxiliary field D2

is set to zero by the NS5-brane boundary conditions. To see why, we examine how the

auxiliary fields transform under R-symmetry. In (3+1) dimensions, D4 is a singlet of the

SO(6) R-symmetry, while F a4 , F b4 , and F c4 form a 6 of SO(6). In (2+1) dimensions, the

auxiliary fields in the N = 4 vector multiplet, the real D3 and the complex F3, form a 3 of

the SO(3) R-symmetry. The auxiliaries in the N = 4 hypermultiplet are more subtle. The

auxiliary fields F a3 and F b3 have four real degrees of freedom. Of those, three real degrees

of freedom form a 3 of SO(3).

In the decomposition from (3+1) dimensions to (2+1) dimensions, then, we must assign

three real degrees of freedom from (F a4 , F
b
4 , F

c
4 ) to the N = 4 vector multiplet, that is, to

(D3, F3). The remaining three real degrees of freedom, and D4, must be assigned to the

N = 4 hypermultiplet, that is, to (F a3 , F
b
3 ). Notice that such an identification makes sense:

F a3 and F b3 describe four real degrees of freedom, yet only three of those form a 3 of SO(3).

The “extra” degree of freedom is D4, which is indeed a singlet of the R-symmetry. The

boundary conditions then set (F a3 , F
b
3 ) to zero, so that D4 is set to zero.

Now we recall the identification from ref. [24], and mentioned above, D2 =
1√
2

(D4 + F26). Notice that such an identification also makes sense, since D2, D4, and

the gauge field are all singlets under R-symmetry. We can easily argue that in our case

F26 = ∂2A6 − ∂6A2 + i [A2, A6] is zero. First, the boundary conditions set A6 = 0. Second,

we perform a dimensional reduction along x6, hence none of the fields in the low-energy

theory depend on x6 (we keep only zero modes), so ∂6A2 = 0. That leaves D2 = 1√
2
D4.

As we argued in the last paragraph, however, D4 ends up in the (2+1)-dimensional N = 4

hypermultiplet, and is thus set to zero by the boundary conditions. We thus have D2 = 0.
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Our conclusion is that the defect flavor fields do not couple to an N = (2, 2) vector

multiplet, since the appropriate coupling to the auxiliary field D2 is absent. In other

words, we (apparently) cannot write the defect action in N = (2, 2) superspace, although

we expect the theory to have N = (2, 2) supersymmetry. The technical question is thus

how to demonstrate that the theory has N = (2, 2) supersymmetry. We will leave that

question for the future, and turn now to other issues that arise in Steps 3 and 4.

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory. When we

use the NS5′-brane to form the (1, k)5-brane, the supersymmetry analysis in appendix A

shows that the system has 3 real supercharges. In field theory language, that näıvely

suggests that the Chern-Simons term breaks N = (2, 2) down to N = (2, 1) or N = (1, 2).

Notice that then the R-symmetry would be a single U(1), which would also be consistent

with the brane description, where the separate SO(3)’s, corresponding to independent

rotations in (345) and (789), are broken to a single SO(3), corresponding to simultaneous

rotations in (345) and (789). The flavor D3-brane obviously only preserves a U(1) subgroup

of that, namely simultaneous rotations in (45) and (89).

At first glance, what is puzzling about N = (2, 1) or N = (1, 2) supersymmetry is how

a (2+1)-dimensional term “knows” about (1+1)-dimensional chirality. In other words, why

does the Chern-Simons term only break a single left-handed supercharge (for example)? We

can make sense of this very simply.12 Consider for the moment a single stack of Nf flavor

D3-branes, so that we obtain flavor fields in only one gauge group. Such a configuration

clearly breaks the parity symmetry of the type IIB setup, which involves an exchange of

the two gauge groups. In the field theory with Chern-Simons terms, we can perform an

integration by parts, producing a theta term on the defect, which breaks parity, so the idea

that the Chern-Simons term may break N = (2, 2) to N = (2, 1) is not unnatural.

What is then curious is that if we add the second stack of flavor D3-branes the system

seems to preserve parity again, so in that case how can we obtain N = (2, 1) supersymme-

try? Here we must be careful, and distinguish two Z2 operations. The first Z2 is normal

parity, which reverses the sign of a spatial coordinate. In our case we are interested in the

spatial coordinate along the (1+1)-dimensional defect. The second Z2 involves an exchange

of the two gauge groups. The simultaneous action of both Z2’s is the “parity symmetry” of

the ABJM theory, as reviewed in section 2.1. Now suppose we have only a single stack of

flavor D3-branes, describing flavor fields in only one gauge group, and preserving N = (2, 1)

supersymmetry. If we perform the first Z2, which exchanges left-movers and right-movers,

then N = (2, 1) becomes N = (1, 2). If we then perform the second Z2, we find flavor in

the fundamental representation of the second gauge group. Clearly, then, when we add

two stacks of flavor D3-branes, one stack will describe flavor fields in one gauge group,

preserving N = (2, 1) supersymmetry, while the other stack will describe flavor fields in

the second gauge group, preserving N = (1, 2) supersymmetry. The entire system can thus

preserve 3 real supercharges and still be invariant under the simultaneous action of bothZ2’s. As an aside, notice that the conventional notation of supersymmetry is a source of

confusion here. The notation N = (2, 1) makes reference only to the first Z2 operation.

12We thank Andreas Karch for the following observation.
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When we talk about supercharges in this theory, however, a better convention may be to

let “left-handed” and “right-handed” refer to the transformation of the supercharges under

the simultaneous action of both Z2’s. We will leave a detailed investigation of these issues

for future research.

Step 4: Take the low-energy limit. Our supersymmetry analysis of appendix C shows

that the D3-brane, which becomes an M5-brane in M-theory, preserves 6 real supercharges

on C4/Zk, which suggests that, in the field theory, when we integrate out the (2+1)-

dimensional N = 4 vector multiplet we should find N = (3, 3) supersymmetry. (Notice

that when k = 1, so that C4/Zk becomes just C4, the system has 8 real supercharges, so

we expect N = (4, 4) supersymmetry.) The procedure of integrating out fields will be much

more complicated than in either the ABJM theory or in the codimension-zero flavor case

above. In particular, the process of integrating out will probably not be possible at the

level of superfields, but rather may have to be done using the components of the superfields.

Given the various complications in constructing the action and integrating out the

(2+1)-dimensional N = 4 vector multiplet, we will try to “work backwards”: we will use

the symmetries of the gravity description to guess the form of the low-energy theory. More

precisely, we will write a scalar potential that has the symmetries we expect. The scalar

potential will describe the coupling of the defect flavor scalars to the scalar components of

the superfields Aa and Ba, restricted to the defect. We will denote the defect flavor scalars

as qni , where i = 1, 2 labels the two gauge groups and n = 1, 2 labels the two complex

scalars of an N = (4, 4) hypermultiplet.

The scalar potential is of course constrained by gauge invariance and dimensional

analysis. The scalars Aa and Ba are (2+1)-dimensional fields (though we will be interested

in their restriction to the (1+1)-dimensional defect), so they have dimension 1/2. The

defect scalars qni are dimension zero. The potential on the (1+1)-dimensional defect must

therefore involve four of the Aa and Ba fields.

The crucial question is what symmetries the potential must have. Here we turn to the

gravity analysis. As mentioned above, the codimension-one M5-brane on C4/Zk preserves

SU(2) × SU(2) × U(1) × U(1)b. Which symmetries are these in the field theory?

Let us return for the moment to the theory without flavor, and review the symmetries.

We start with Step 2, at which point the field theory is a (2+1)-dimensional N = 4

supersymmetric Yang-Mills theory (without Chern-Simons terms). The R-symmetry is

an SO(4) ∼ SO(3) × SO(3) where the two SO(3)’s correspond to independent rotations

in (345) and (789). We will call these SU(2)1 and SU(2)2, where SU(2)1 acts on (A1, B
∗
1)

as a doublet while SU(2)2 acts on (B∗
2 , A2) as a doublet. When we proceed to Step 3 and

form the (1, k)5-brane, which introduces Chern-Simons terms in the field theory, the R-

symmetry breaks to SU(2)R, the diagonal part of SU(2)1 × SU(2)2, which acts on (A1, B
∗
1)

and (B∗
2 , A2) simultaneously as doublets, and which corresponds to simultaneous rotations

in (345) and (789). At this stage the theory also has the SU(2)D symmetry we mentioned

in section 4.2 as well as the U(1)b symmetry. The low-energy limit of Step 4 then enhances

the SU(2)D to SU(2)A×SU(2)B. As we reviewed in section 2.1, the key observation then is

that SU(2)R and SU(2)A × SU(2)B do not commute, hence the full R-symmetry is SU(4).
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When we add our defect flavor, the symmetry in Step 2 breaks to U(1)1 × U(1)2,

corresponding to independent rotations in (45) and (89). That breaks in Step 3 to the

diagonal U(1)R, corresponding to simultaneous rotations in (45) and (89). The symmetry

at that stage is then U(1)R, as well as SU(2)D and U(1)b. That must be the case because

the defect flavor fields couple only to adjoint fields: they do not couple directly to the

bifundamentals Aa and Ba, whose couplings are of the form written in eq. (2.6), which

preserves SU(2)D × U(1)b.

We then know from the gravity side that after Step 4 the symmetry becomes SU(2)×
SU(2) × U(1) × U(1)b. Without knowing the couplings of the defect flavor, we cannot say

exactly which two SU(2)’s these are. For example, the U(1)R may be enhanced back to

SU(2)R, in which case the other SU(2) must be SU(2)D. Another possibility is that the

U(1)R is enhanced back to the full SU(2)1×SU(2)2, in which case the U(1) must be U(1)D,

the U(1) part of SU(2)D, which commutes with all of SU(2)1 × SU(2)2.

For concreteness, we will take the latter scenario as a working assumption, and write

a scalar potential that respects SU(2)1 × SU(2)2 × U(1)D × U(1)b. The scalar potential

must thus be built from SU(2)1 × SU(2)2 invariants. For convenience we define

C =

(

A1

B∗
1

)

, D =

(

B∗
2

A2

)

, (6.2)

where C transforms as a doublet under SU(2)1 and D as a doublet under SU(2)2. The

two U(1) symmetries act as follows. The first is U(1)D (the U(1) part of SU(2)D), which

acts as

A1 → eiαA1, A2 → e−iαA2, B∗
1 → eiαB∗

1 , B∗
2 → e−iαB∗

2 .

The second is the ABJM baryon number U(1)b, which acts as Aa → eiαAa and Ba →
e−iαBa. Moreover we have also two N = (2, 2) fundamental multiplets confined to the

defect. Their scalar parts and the corresponding gauge transformations are given by

qn1 → eiΛ1qn1 , qn2 → eiΛ2qn2 , n = 1, 2. (6.3)

Note that these scalar fields are confined to the (1+1)-dimensional defect, and have dimen-

sion zero. n = 1, 2 labels the two complex scalars in an N = (4, 4) hypermultiplet.

These scalars are inert under all four global symmetry groups. To see why, we return to

the D3/D3 theory of ref. [24]. As we mentioned above, that theory has an SU(2)×SU(2)×
U(1) × U(1) R-symmetry, where the SU(2) × SU(2) part corresponds to the SO(4) that

acts on the directions transverse to both the color and flavor D3-branes, (4589), one U(1)

corresponds to rotations in (26) (along the color D3-branes but transverse to the flavor

D3-branes), and the other U(1) corresponds to rotations in (37) (transverse to the color

D3-branes but along the flavor D3-branes). In the D3/D3 theory, the scalars transform as

(0, 0)( 1
2
,− 1

2
) under the SU(2) × SU(2) × U(1) × U(1) R-symmetry. In the current system,

the SU(2)1 symmetry rotates (345) and SU(2)2 rotates (789). (Recall that the diagonal of

SU(2)1 × SU(2)2 is SU(2)R, corresponding to simultaneous rotations in (345) and (789).)
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The key point is that the two U(1)’s from the D3/D3 theory are broken here: rotations

in (26) are clearly broken by the NS5-branes (in Step 2), and rotations in (37) alone are

not part of the product group (rotations in (345)) × (rotations in (789)). The scalars are

clearly neutral under all of the symmetries here.

With the above ingredients, the possible contributions to a scalar defect potential

preserving SU(2)1 × SU(2)2 × U(1)D × U(1)b are

Sdef =
∑

n=1,2

∫

d2x
[

q̄n1 D̄C̄CDq
n
1 +q̄n1 D̄DD̄Dq

n
1 + q̄n2 C̄D̄DCq

n
2 +q̄n2 C̄CC̄Cq

n
2

]

+

∫

d2x
[

q̄11D̄C̄CDq
2
1 + q̄11D̄DD̄Dq

2
1 + q̄12C̄D̄DCq

2
2+q̄12C̄CC̄Cq

2
2+(c.c.)

]

. (6.4)

The coefficient of each of these terms, which we have suppressed for notational clarity,

remains to be determined. Parity ensures that the first and third terms in each line must

have the same coefficient, and similarly for the second and fourth terms in each line.

Note that similar terms with additional factors of higher powers of the zero-dimensional

scalars, such as (q̄n1 q
n
1 )l with some integer l, are compatible with the symmetries listed above

and might in principle be present in the potential terms given. However for a conformal

theory with six real supercharges we expect such terms to be absent due to supersymmetric

non-renormalization theorems.

We emphasize that in writing eq. (6.4) we assumed that the final symmetry is SU(2)1×
SU(2)2×U(1)D×U(1)b. We stress that this identification of the symmetry is an assumption

at this stage. Indeed, in this section we have seen that many questions arise for the

theory describing codimension-one N = (3, 3) supersymmetric flavor. We plan to further

investigate these questions in the future.

7 Codimension two N = 4 supersymmetric flavor

In this section we study codimension-two flavor, that is, flavor fields propagating in a (0+1)-

dimensional subspace of the (2+1)-dimensional ABJM theory. The flavor fields will preserve

(0+1)-dimensional N = 4 supersymmetry. The flavor brane in this case is a D3-brane in

type IIB, a D2-brane in type IIA, and an M2-brane in M-theory. We perform a complete

supergravity analysis for these branes and comment on the structure of the field theory.

7.1 Supergravity with M2/D2-brane probes

We begin by adding Nf coincident D3-branes extended along (0346) in the type IIB setup.

The strings from the flavor D3-branes to the two stacks of color D3-branes introduce

massless flavor in both gauge groups. As shown in table 1 in section 3.1, these D3-branes

preserve 2 real supercharges.

After T-duality in x6 the D3-branes become D2-branes. After uplift to M-theory and

the “near-horizon” limit, the D2-branes become M2-branes on C4/Zk. Using the results

of appendix B, we find that the embedding of the M2-branes is described by the equations

z1 = z2 = 0, z3 = z̄4 in C4/Zk. Such an embedding breaks the SU(4) × U(1)b symmetry

of C4/Zk to SU(2) × U(1) × U(1). The SU(2) symmetry acts on
(

z1, z2
)

, the first U(1)
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acts as
(

z1, z2
)

→
(

eiαz1, eiαz2
)

and the second U(1) acts as
(

z3, z4
)

→
(

eiαz3, e−iαz4
)

.

Note that in this case the U(1)b symmetry is broken. In appendix C.1 we find that the

M2-branes preserve 4 real supercharges.

If we take Nc → ∞, we can replace the color M2-branes by their near-horizon geom-

etry, which is AdS4 × S7/Zk. The probe M2-branes are now extended along AdS2 inside

AdS4 and wrap a trivial one-cycle in S7/Zk. In appendix C.2 we analyze the κ-symmetry

condition for these branes and find (as expected) that after the near-horizon limit the

number of preserved supercharges has doubled to 8.

We have embedded the M2-branes such that they do not wrap the M-theory circle that

shrinks when we reduce to type IIA. Put another way, they break the U(1)b symmetry of

the geometry because they are localized in that circle direction. We conclude that for large

k, such that k5 ≫ Nc, the M2-branes reduce to D2-branes in type IIA that wrap AdS2 and

a trivial one-cycle in CP3.

To summarize: in the type IIB setup we can add D3-branes that produce massless flavor

fields for both gauge group factors. These D3-branes become M2-branes in M-theory onC4/Zk that preserve 4 real supercharges. We thus expect that the flavor fields will preserve

(in (0+1)-dimensional notation) N = 4 superconformal symmetry. The corresponding R-

symmetry group should be SU(2) [49, 50], and indeed an SU(2) appears in the symmetry

of the brane contruction. In the next subsection we will comment on the coupling of the

(0+1)-dimensional flavor fields to the fields of the ABJM theory.

7.2 Comments about the field theory

We will apply our recipe again, and discuss some complications that arise when we add

the NS5-branes in Step 2.

Step 1: Construct the D3/D3 theory. In the type IIB setup we introduced D3-

branes along (0346). As in section section 6.2, the relevant theory is the D3/D3 theory

written in ref. [24]. The full theory preserves 8 real supercharges. In the flavor sector we

have two (1+1)-dimensional N = (2, 2) chiral superfields Q and Q̃, which together form

an N = (4, 4) hypermultiplet. The flavor fields couple to an N = (4, 4) vector multiplet.

The action is written explicitly in components in appendix D of ref. [24].

Step 2: Add the NS5-branes. We once again add the NS5- and NS5′-branes along

(012345). The brane configuration appears in the table below (where we write explicitly

only the NS5-brane), followed by a second table with the relevant arrangement of fields

into (2+1)-dimensional and (1+1)-dimensional multiplets. In the latter table we use the

same notation as in section 6.2.

0 1 2 3 4 5 6 7 8 9

Nc D3 • • • – – – • – – –

Nf D3 • – – • • – • – – –

NS5 • • • • • • – – – –
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(2+1)d N = 4 V (A012
µ , 345, F3,D3) N = 4 H (A6, 789, F

a
3 , F

b
3 )

(1+1)d N = (4, 4) V (A06
µ , 5789,D2, F2) N = (4, 4) H (A1, A2, 34, F

a
2 , F

b
2 )

The (1+1)-dimensional defect flavors couple to the (1+1)-dimensional N = (4, 4) vec-

tor multiplet, which includes the components of the vector field along both the color and

flavor D3-branes, A0 and A6, as well as the scalars transverse to both the color and flavor

D3-branes, (5789). Following ref. [24], we identify D2 = 1√
2
(D4 + F12), where D4 is the

auxiliary field from the (3+1)-dimensional N = 1 vector multiplet of the N = 4 SYM

theory, and F12 is the gauge field strength in the (12) directions. The components of the

vector field along the color D3-branes but transverse to the flavor D3-branes, A1 and A2,

and the scalars transverse to the color D3-branes but along the flavor D3-branes, (34),

appear in an N = (4, 4) hypermultiplet that does not couple to the defect flavors.

We next need to dimensionally reduce in the x6 direction. The defect flavor action

will then become (0+1)-dimensional, giving us our codimension-two flavor. As mentioned

in section 3.1 and appendix A, the brane intersection above preserves 4 real supercharges,

hence we expect (0+1)-dimensional N = 4 supersymmetry. Clearly the gauge field compo-

nent A6 will become a scalar in (0+1)-dimensions, hence the codimension-two defect flavor

will couple to five scalars, A6 and (5789). The defect flavors of course also couple to the

gauge field component A0.

After dimensional reduction we then impose the NS5-brane boundary conditions.

These set to zero A6 and (789), (they are in the (2+1)-dimensional N = 4 hypermul-

tiplet, as shown above), so the defect flavors couple only to the single scalar 5. We may

identify 5 as the single real scalar, called σ in section 2.1, in the (2+1)-dimensional N = 2

vector multiplet that is part of the N = 4 vector multiplet written above. Notice also that

after dimensionally reducing and imposing the NS5-brane boundary conditions, a coupling

to D2 seems to survive, where now D2 = 1√
2
F12, since the NS5-brane boundary conditions

set D4 = 0, as explained in section 6.2.

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory. As men-

tioned above, when we replace one NS5-brane with the (1, k)5-brane, the D3-brane along

(0346) preserves 2 real supercharges. In the field theory we thus expect the Chern-Simons

terms to break the supersymmetry to (0+1)-dimensional N = 2 supersymmetry. The R-

symmetry should then be U(1). That is consistent with the symmetry in the brane picture,

where the two U(1)’s, corresponding to independent rotations in (34) and (78), are broken

to a single U(1), corresponding to simultaneous rotations in (34) and (78).

Step 4: Take the low-energy limit. As mentioned above, the flavor D3-brane becomes

a codimension-two M2-brane in M-theory on C4/Zk, preserving an SU(2) × U(1) × U(1)

subgroup of the isometries, and 4 real supercharges. In the field theory, we thus expect

an enhancement back to (0+1)-dimensional N = 4 supersymmetry. We suspect that the

SU(2) symmetry is the R-symmetry group (which would be consistent with the results of

refs. [49, 50]). Notice also the interesting feature that the flavor fields should break the

ABJM U(1)b symmetry. This is our only example in which that occurs.
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8 SU(4) equivalence of probe flavor

Although the ABJM construction starts with a fairly complicated brane setup in type IIB,

we have seen in section 2 that after the “near-horizon” limit we end up with M2-branes

probing C4/Zk. The “near-horizon” limit, that is, zooming in on the C4/Zk singularity

of the space X8 mentioned in section 2.3, discards much of the complicated information of

the type IIB setup. After taking Nc → ∞ we reach M-theory on AdS4 × S7/Zk.
As mentioned in the introduction, for k = 1 the addition of flavor branes in M-

theory, namely codimension-two M2-branes and codimension-one M5-branes, was studied

in ref. [33]. There the authors had to consider only one embedding for each probe brane

since the SO(8) isometry group of C4 or S7 can map any two supersymmetric embeddings

into each other. If two brane embeddings are related by such an SO(8) symmetry transfor-

mation, then they are physically equivalent. In other words, when k = 1 all supersymmet-

ric codimension-two M2-branes are physically equivalent, and similarly for supersymmetric

codimension-one M5-branes.

For general k, the Zk orbifold of C4 breaks the SO(8) isometry group to SU(4) ×
U(1)b. Two supersymmetric brane embeddings may be related by an SO(8) element that

is not contained in SU(4) × U(1)b. In that case, we have two physically distinct ways of

adding flavor. An interesting question is whether we can fully classify the supersymmetric

embeddings of flavor branes in the ABJM theory, but that is beyond the scope of this paper.

Here, we will discuss how to use the unbroken SU(4)×U(1)b symmetry to show that certain

probe branes are physically equivalent although they look very different in the type IIB

setup. When that occurs, we will call the two type IIB D-branes “SU(4)-equivalent.”

On the gravity side, we will present three examples of SU(4)-equivalent pairs. Two of

these examples appeared above, in section 4.1, for the codimension-zero KK monopole, and

section 6.1, for the codimension-one M5-brane. Here we will present one more example, for

a codimension-two M2-brane, and we will explore the field theory side more. In the field

theory, SU(4) equivalence occurs when two different theories flow to the same low-energy

fixed point. In the language of our recipe, the two different theories are the theories we

obtain at the end of Step 3, which flow to the same theory at low energy in Step 4. We will

present one explicit example of such flow in what follows, for the codimension-zero case.

Two necessary conditions for two D-branes to be SU(4)-equivalent are 1.) they become

the same object in M-theory and 2.) they have the same codimension. More precisely, as

we do a T-duality along x6 to go from type IIB to type IIA, two SU(4)-equivalent D-branes

must have the same codimension in the directions (012). Furthermore, if both D-branes

wrap x6 or both do not wrap x6, then they have to be both Dp-branes. Another possibility

is that a type IIB D(p+1)-brane is equivalent to a type IIB D(p-1)-brane, if the D(p+1)-

brane wraps x6 and the D(p-1)-brane does not. Notice also that, in M-theory on C4/Zk,
the orientation of the object does not affect the symmetries it preserves. (That is obvious

in the k = 1 case.) That means that, in addition to an SU(4) × U(1)b transformation, we

can also reverse the orientation of an object, so that, in type IIB, Dp-branes and anti-Dp-

branes may be SU(4) equivalent. Finally, an especially important point is that, due to the

“near-horizon” limit in which the R-symmetry SO(3)R is enhanced to SU(4)R, two branes
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in type IIB that preserve different amounts of supersymmetry and different subgroups of

the SO(3)R may still be SU(4) × U(1)b equivalent.

8.1 Codimension-zero KK monopoles

We start with the codimension-zero D5-branes along (012789) from section 4. As shown in

ref. [32], these D5-branes become KK-monopoles on C4/Zk with the embedding equations

z1 = z̄3, z2 = z̄4. As we argued above, we can perform an SU(4) transformation from the

old coordinates zi to new coordinates zinew, such that the embedding becomes Im(zinew) = 0,

∀i. Explicitly, the SU(4) transformation is

z1
new =

1√
2

(

z1 + z3
)

, z2
new =

−i√
2

(

z1 − z3
)

,

z3
new =

1√
2

(

z2 + z4
)

, z4
new =

−i√
2

(

z2 − z4
)

. (8.1)

What happens if we start with a KK monopole described by Im(zi) = 0, ∀i and return to

type IIB (using the results of appendix B)? Up to an SU(4) × U(1)b transformation that

only changes the constant value of x6, we find D7-branes along (01235679) (If we reverse

the orientation of the KK monopole, we can obtain anti-D7-branes, as explained above).

These D7-branes are SO(3)R equivalent to the D7-branes along (01234678) listed in table 1.

We summarize the SU(4) equivalence in the following table.

Type IIB D5 (012789) D7 (01235679)

M-theory KK z1 = z̄3, z2 = z̄4 KK Im(zi) = 0

We have found two different types of D-branes in type IIB that lead to the same

configuration in M-theory, and are therefore physically identical in M-theory. That might

be surprising since the D-branes preserve different amounts of supersymmetry and different

subgroups of the SO(3)R symmetry in the type IIB setup. We will, therefore, now show

on the field theory side that both D-branes lead to the same theory upon taking the low-

energy limit.

For the flavor D5-branes we reviewed the field theory in section 4.2, following

refs. [32, 36, 37]. The action of the N = 3 supersymmetric (2+1)-dimensional flavor

appears in eqs. (4.1) and (4.3). Here we will begin instead with anti-D7-branes along

(01234678). We will apply our recipe once again.

Step 1: Construct the D3/D7 theory. We begin with D3-branes along (0126) and

anti-D7-branes along (01234678). Such an intersection preserves 8 real supercharges. The

intersection has 4 ND directions, hence we obtain non-chiral flavor propagating in (3+1)

dimensions (along (0126)). The field theory of the 4 ND D3/D7 intersection is well known:

it is (3+1)-dimensional SU(Nc) N = 4 supersymmetric Yang-Mills theory coupled to N = 2

supersymmetric hypermultiplets in the fundamental representation of SU(Nc). The action

is usually written in N = 1 superspace, and includes the usual kinetic terms for the flavor

fields as well as a superpotential coupling for the flavor fields whose form is dictated by

N = 2 supersymmetry. If we decompose the N = 4 vector multiplet into an N = 1 vector
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multiplet and three N = 1 chiral multiplets, then the superpotential includes a coupling

of the flavor fields to the N = 1 chiral multiplet whose scalars represent fluctuations of the

branes in the overall transverse directions, which here are (59). For more details about the

D3/D7 theory, see ref. [16] and references therein.

Step 2: Add the NS5-branes. We now add the NS5-brane and NS5′-brane along

(012345), and let the D3-branes end on them. As mentioned in appendix A, the system

then preserves 4 real supercharges. Technically, we should perform a dimensional reduction

from (3+1) dimensions to (2+1) dimensions (since the anti-D7-branes are extended along

x6) and then impose the NS5-brane boundary conditions. We know what the result has to

be, however. The NS5-brane boundary conditions set to zero the scalars (789). That means

that after imposing those boundary conditions, the flavor fields couple only to the single

scalar 5. We also know that the theory has 4 real supercharges, or in (2+1)-dimensional lan-

guage, N = 2 supersymmetry. The flavor fields must of course have kinetic terms, with the

usual coupling to the N = 2 vector multiplet. The key observation is that the N = 2 vec-

tor multiplet includes a single real scalar (which, recalling the type IIB construction of the

ABJM theory, must indeed be 5). We can conclude that the (2+1)-dimensional flavors have

no superpotential: any superpotential coupling must preserve N = 2 supersymmetry, and

hence must be a coupling to an N = 2 chiral superfield, but that would introduce couplings

to additional scalars that are obviously absent here. In short, the flavor fields only couple to

enough scalars for an N = 2 vector multiplet! The (2+1)-dimensional action in the flavor

sector is then simply the N = 2 kinetic term, whose explicit form appears in eq. (4.1).

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory. As usual,

these steps leave the form of the flavor action untouched. Notice also that in this case

the supersymmetry remains N = 2 throughout. For example, table 1 in section 3.1 shows

that after we form the (1, k)5-brane the system still preserves 4 real supercharges. Notice

also that the symmetries of the field theory and the brane construction agree. N = 2

supersymmetry has a U(1) R-symmetry, and the anti-D7-brane along (01234678) clearly

preserves the U(1) subgroup of SO(3)R that rotates (34) and (78) simultaneously.

Step 4: Take the low-energy limit. Now we come to the crucial step. We must write

all terms consistent with N = 2 supersymmetry, the U(1) R-symmetry, and the U(1)b
symmetry. Here we will borrow some arguments from ref. [40]. Only one such term exists,

a coupling to the N = 2 chiral fields Φi, of the form written in eq. (4.2). We must therefore

add such a term to the superpotential, with some coefficient. Arguments similar to those in

ref. [40], based on the sign of the two-loop beta function, then suggest that the coefficient

flows to precisely the right value to produce the enhancement to N = 3 supersymmetry.

The coupling is then identical to the term in eq. (4.2), and we thus recover exactly the

same theory as in section 4.

We have thus seen how two different field theories flow to the same low-energy fixed

point, and hence how SU(4)-equivalence appears on the field theory side. Notice that these

two theories preserved different symmetries: the D5-brane along (012789) preserved the
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whole SO(3)R while the anti-D7-brane along (01234678) preserved only a U(1) subgroup.

We now turn to other examples, of higher codimension.

8.2 Codimension-one M5-branes

We return to the codimension-one D3-brane along (0137) from section 6. These become

D4-branes after T-duality in x6. Uplifting to M-theory and taking the “near-horizon”

limit gives M5-branes in M-theory on C4/Zk. Using the results of appendix B, we find

that the embedding of the M5-branes is described by the equations z1 = z2, z3 = z4. In

section 6 we used an SU(4) transformation to produce new embedding equations. The

transformation was

z1
new =

1√
2

(

z1 − z2
)

, z2
new =

1√
2

(

−z3 + z4
)

,

z3
new =

1√
2

(

z1 + z2
)

, z4
new =

1√
2

(

z3 + z4
)

, (8.2)

so that the embedding equation becomes z1
new = z2

new = 0. The M5-brane is thus extended

along (01) and z3
new and z4

new. Going back to type IIB this embedding corresponds to the

D5-branes along (013456). The D3-brane along (0137) and the D5-brane along (013456)

are thus SU(4) equivalent. We summarize the SU(4) equivalence in a table:

Type IIB D3 (0137) D5 (013456)

M-theory M5 z1 = z2, z3 = z4 M5 z1 = z2 = 0

Here we will briefly comment on the action that we obtain from the D5-brane

along (013456).

Step 1: Construct the D3/D5 theory. We begin with the action describing the

(2+1)-dimensional defect fields in the D3/D5 intersection, which is the same action we

mentioned in section 4, originally constructed in refs. [18, 19]. Once again, the (3+1)-

dimensional N = 4 vector multiplet decomposes into two (2+1)-dimensional multiplets, an

N = 4 vector multiplet and an N = 4 hypermultiplet. The flavor fields couple only to the

N = 4 vector multiplet.

Step 2: Add the NS5-branes. We now add the NS5- and NS5′-branes along (012345).

The brane configuration appears in the table below. Notice that we must dimensionally

reduce the defect action along x6 because the flavor D5-brane is now along x6. We also of

course have a new decomposition of fields from (2+1) dimensions to (1+1) dimensions.

0 1 2 3 4 5 6 7 8 9

Nc D3 • • • – – – • – – –

Nf D5 • • – • • • • – – –

NS5 • • • • • • – – – –

We write the reduction of the fields in the table below. The first line is the arrange-

ment of fields that is relevant for the D3/D5 intersection, that is, the flavor fields in that
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intersection couple to the N = 4 vector multiplet listed in the first line. The second line

is then the arrangement of fields relevant for ABJM. The last line is the dimensional re-

duction of the first line to (1+1) dimensions, which is relevant for the D3/D5 intersection

when x6 is compact. In particular, notice that if we rewrite the action for the (2+1)-

dimensional defect fields in the D3/D5 system in terms of (1+1)-dimensional fields, the

flavors couple to the N = (4, 4) vector multiplet whose four scalars are (789) (transverse

to both color D3-branes and flavor D5-branes) and the vector field component A6 (along

the reduced direction).

(2+1)d D5 N = 4 V
(

A016
µ , 789, FD5,DD5

)

N = 4 H
(

A2, 345, F
a
D5, F

b
D5

)

(2+1)d NS5 N = 4 V
(

A012
µ , 345, FNS5,DNS5

)

N = 4 H
(

A6, 789, F
a
NS5, F

b
NS5

)

(1+1)d N = (4, 4) V
(

A01
µ , A6, 789,D2, F2

)

N = (4, 4) H
(

A2, 345, F
a
2 , F

b
2

)

At this stage, the system preserves 4 real supercharges, as mentioned in section 3.1

and appendix A. The flavor fields will necessarily be non-chiral, since they come from

the dimensional reduction of a (2+1)-dimensional theory. We thus expect an N = (2, 2)

supersymmetric action, which will include the kinetic term and possibly a superpotential.

The theory we obtain in this fashion is very different from what we obtain from the

D3-brane along (0137). Here, the boundary conditions due to the NS5-branes set to zero

all four scalars in the N = (4, 4) vector multiplet, namely A6 and (789). That suggests

that the flavor fields do not couple to any N = (2, 2) multiplet, simply because the defect

flavor fields couple to no adjoint scalars.13 Furthermore, N = (2, 2) supersymmetry has

the wrong R-symmetry to describe a D5-brane along (013456). N = (2, 2) supersymmetry

has a U(1)×U(1) R-symmetry, while the D5-brane clearly preserves the full SO(3)×SO(3)

symmetry acting on (345) and (789).

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory. Forming

the (1, k)5-brane breaks one real supercharge. The theory we obtain at the end of Step

3 thus has 3 real supercharges and describes defect flavor fields that couple to no adjoint

scalars, although of course they still couple to the gauge field components A0 and A1.

Whatever this theory is, we predict that in Step 4 it flows at low energies to the theory we

discussed in section 6. We leave the details of that analysis for future research.

8.3 Codimension-two M2-branes

Here we return to the D3-branes along (0346) from section 7. As mentioned in section 7.1,

these D3-branes along (0346) become M2-branes on C4/Zk with the embedding given by

z1 = z2 = 0, z3 = re
i

„

y0+
x6
0+φ

2

«

, z4 = re
i

„

y0+
x6
0−φ

2

«

, where y0 and x6
0 are constants. We

13As shown in refs. [18, 19], the defect flavor fields in the D3/D5 intersection do couple to normal

derivatives of some adjoint scalars. More precisely, terms involving the derivative ∂2 of the scalars (345)

appear in the defect action as F -terms, that is, they appear in combination with the auxiliary field we

called FD5. Whether these scalars can solve this problem is not clear to us.
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now perform an SU(4) transformation,

z1
new =

1√
2

(

z1 + e−ix
6
0z4
)

, z2
new =

1√
2

(

z2 + e−ix
6
0z3
)

,

z3
new =

1√
2

(

−eix6
0z2 + z3

)

, z4
new =

1√
2

(

−eix6
0z1 + z4

)

,

such that the embedding becomes

z1
new =

r√
2
e
i

„

y0+
−x6

0−φ

2

«

, z2
new =

r√
2
e
i

„

y0+
−x6

0+φ

2

«

,

z3
new =

r√
2
e
i

„

y0+
x6
0+φ

2

«

, z4
new =

r√
2
e
i

„

y0+
x6
0−φ

2

«

.

This embedding describes, in type IIB, a D3-brane along (0678). We have thus shown that

the D3-branes along (0346) and (0678) are SU(4)-equivalent. We summarize the SU(4)

equivalence in a table:

Type IIB D3 (0346) D3 (0678)

M-theory M5 z1 = z2 = 0, z3 = ei(2y0+x
6
0)z̄4 M5 z1 = ei(2y0−x

6
0)z̄2 = e2iy0 z̄3 = e−ix

6
0z4

Here again we will just comment briefly on the field theory.

Step 1: Construct the D3/D3 theory. We begin again with the D3/D3 theory of

ref. [24], which we mentioned already in sections 6 and 7. In this case, the flavor fields

are confined to propagate along the (1+1)-dimensional defect in the (06) directions. The

defect flavors couple to an N = (4, 4) supersymmetric vector multiplet that includes the

scalars (3459), transverse to both the color and flavor D3-branes.

Step 2: Add the NS5-branes. We add the NS5- and NS5′-branes along (012345).

At this stage the system preserves 4 real supercharges, as mentioned in section 3.1 and

appendix A. We must also dimensionally reduce the defect action along x6, since the flavor

D3-branes are extended in x6. We thus expect a (0+1)-dimensional defect action with

N = 4 supersymmetry. The theory should preserve the same symmetries as the theory

we obtain from the D3-brane along (0346): clearly in the brane description both flavor

D3-branes preserve the same SO(2) subgroup, rotating (34) and (78) simultaneously, of

the SO(3)R, that rotates (345) and (789) simultaneously. The couplings of the two theories

are very different, however. For the theory from the D3-brane along (0346), the defect

flavors couple to the scalar 5. For the theory from the D3-brane along (0678), the defect

flavors will couple to the three scalars 345, since the scalar 9 is set to zero by the NS5-brane

boundary conditions.

Step 3: Compactify x6, form the (1, k)5-brane, and lift to M-theory. Forming

the (1, k)5-brane breaks two real supercharges, so the theory then has (0+1)-dimensional

N = 2 supersymmetry. The prediction of SU(4) equivalence is then that, in Step 4, this

theory flows at low energy to the same N = 4 supersymmetric theory we obtain from the

D3-brane along (0346). We leave the details of that analysis to future research.
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9 Conclusion

We have studied a large class of supersymmetric flavor branes in the brane construction

of the ABJM theory, and provided a general method to derive the corresponding field

theories. We applied our method to four different examples. We first studied codimension-

zero N = 3 supersymmetric flavor, which appeared in the supergravity description as

D5-branes/D6-branes/KK-monopoles. We then studied codimension-one chiral N = (0, 6)

supersymmetric flavor, which appeared in supergravity as a D7/D8/M9-brane. Next we

studied codimension-one non-chiral N = (3, 3) supersymmetric flavor, which appeared in

supergravity as a D3/D4/M5-brane. Finally we studied codimension-two N = 4 super-

symmetric flavor, which appeared in supergravity as a D3/D2/M2-brane. In all cases we

discussed both the supergravity description and the field theory description. On the su-

pergravity side we studied the embedding of the brane/monopole in supergravity and the

symmetries it preserved, including the number of supersymmetries. For the first two cases,

on the field theory side we wrote the kinetic terms and couplings of the flavor fields ex-

plicitly and matched the symmetries to the supergravity description. In the last two cases

we took steps toward constructing the Lagrangians, commenting in particular on the sym-

metries. Finally, we argued how in general different probe branes in type IIB can become

physically equivalent in M-theory and therefore give rise to the same field theory.

Our work is only the tip of the iceberg. Many extensions and generalizations are pos-

sible. We did not explore the matching of supergravity fields to field theory operators.

Many deformations are also possible, for example, we can give the flavor fields a (super-

symmetric or non-supersymmetric) mass in various ways. A nonzero mass (which breaks

scale invariance) would allow us to compute meson spectra along the lines of ref. [13]. We

can also deform the background, for example by replacing C4 with a cone over some non-

trivial seven-dimensional manifold, such that the theory to which we add flavor would have

reduced supersymmetry. We can also ask what role flavor fields play in various dualities,

such as mirror symmetry [51]. More general types of probe branes are also possible [52],

for example the author of ref. [53] studied the addition of co-isotropic codimension zero

probe D8-branes on the gravity side, and the authors of ref. [54] studied more generally the

addition of codimension-one domain walls. Many applications are also possible, especially

in the context of hydrodynamics and/or condensed matter physics, for example along the

lines of refs. [55–57] (as just a small sample).

Another particularly interesting extension of our work would be to study back-reaction

effects. The effect of the KK monopoles on the metric of eleven-dimensional supergravity

has already been studied in refs. [36–38]. As stated in ref. [34], when we include back-

reaction we should see that the D4/M5-branes change the rank of the gauge group(s). The

back-reaction of the M5-branes can in principle be studied using the methods of ref. [58].

As stated in refs. [34, 59, 60], when we include back-reaction the D8-brane will source the

Romans mass (Ramond-Ramond zero-form field strength), which means that the sum of

the Chern-Simons levels of the two gauge groups will no longer be zero.

We plan to study these and various related issues in the future.
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A Supersymmetry of type IIB probes

In this appendix we will add supersymmetry-preserving D-branes to the type IIB setup

of the ABJM theory. Our starting point is the list of probes in ref. [61], since these are

known to be mutually supersymmetric with respect to the D3-branes, but now we have

two new ingredients: the NS5-branes and the (1,k)5-brane.14 These new ingredients break

the “usual” SO(6) symmetry, which rotates the (345789) directions into one another, down

to the SO(3) that rotates (345) and (789) simultaneously.

As mentioned in section 3.1, we limit our search for supersymmetric probes by imposing

four constraints. First, we consider only D1-, D3-, D5- and D7-brane probes (the list from

ref. [61]). Second, we do not separate any probes from the D3-branes in overall transverse

directions. Third, when we consider multiple probes, i.e. Nf > 1, we do not separate them

from each other, so that they retain a U(Nf) symmetry. Fourth, we consider only probes

aligned along the coordinate axes. More generally the probe brane could be at an angle

with respect to these axes. We studied a few special cases of probes at angles (see below)

and found that such probes never appear to exhibit enhanced supersymmetry.

Our results are summarized in table 1 in section 3.1, reproduced here as table 2. The

details of the notation (such as the column headings) appear in section 3.1.

To count unbroken supercharges we follow ref. [43] very closely. In particular, we

perform a different T-duality from the one that leads to the ABJM theory: we T-dualize

in x2, not x6, and then lift to M-theory. The type IIB construction reviewed in section 2.2

then has a very simple interpretation in terms of M-branes alone (rather than M-branes in

some nontrivial geometry). The D3-branes become M2-branes along (016), the NS5-brane

becomes an M5-brane along (012345), and the (1, k)5-brane becomes an M5-brane tilted

14Another new ingredient is that the x6 direction is compact. While that is crucially important for

deriving the low-energy (2+1)-dimensional worldvolume field theory, it will not affect the counting of

supersymmetries.
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Type IIB Type IIA M theory codim wrapping SUSY SUSY (anti)

D1 D2 M2 2 0(7) 2 2

D3 D2 M2 0 0126 6 0

D3 D4 M5 1 01(37) 3 3

D3 D4 M5 1 01(38) 2 2

D3 D2 M2 2 0(34)6 2 2

D3 D2 M2 2 06(78) 2 2

D5 D6 KK 0 012(347) 2 2

D5 D6 KK 0 012(349) 4 2

D5 D6 KK 0 012789 6 0

D5 D4 M5 1 013456 3 3

D5 D4 M5 1 01(378)6 2 2

D5 D4 M5 1 01(389)6 3 3

D5 D6 KK 2 0(34)789 2 2

D7 D6 KK 0 0126(3478) 2 4

D7 D6 KK 0 0126(3479) 2 2

D7 D8 M9 1 01345789 3 3

Table 2. List of D-branes (extended along the coordinate axes) that we can add to the type IIB

construction while still preserving some supersymmetry.

at an angle θ in the (37), (48), and (59) directions and an angle −θ in the (2#) directions,

relative to the other M5-brane, where tan θ = k.

Let ǫ denote the 32-component Majorana spinor and ΓA the 32× 32 Γ-matrices of 11-

dimensional supergravity. The Γ matrices obey the flat space Clifford algebra {ΓA,ΓB} =

2ηAB , where we use a mostly-plus metric. Let ΓABC... denote the totally antisymmetric

product of Γ-matrices, equivalent to the usual product due to the Clifford algebra. The

product Γ0123456789# = 132, where 132 is the 32 × 32 identity matrix.

The M2- and M5-branes give rise to projection conditions on ǫ,

Γ016ǫ = ǫ, Γ012345ǫ = ǫ, RΓ012345R
−1ǫ = ǫ, (A.1)

where the last condition, for the rotated M5-brane, involves the rotation matrix

R(θ) = exp

(

−θ
2
Γ2# +

θ

2
Γ37 +

θ

2
Γ48 +

θ

2
Γ59

)

. (A.2)

Notice that R−1(θ) = R(−θ). Making use of the fact that all of the Γ-matrices in R

anti-commute with Γ012345, we can simplify the condition for the rotated M5-brane,

RΓ012345 R
−1ǫ = R2Γ012345ǫ = R2ǫ = ǫ, (A.3)

where we used the projection condition for the un-rotated M5-brane. We can then write

the rotated M5-brane’s projection condition as (R2 − 132)ǫ = 0. At this point we need to
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write the matrices appearing in the projection conditions explicitly, in order to count the

number of preserved supercharges. Following ref. [43], we use a basis in which the following

set of mutually-commuting matrices are diagonal:

Γ012345 = (116,−116)

Γ016 = (12,−12,−12,12,−12,12,12,−12, . . .)

Γ2#37 = (18,−18, . . .)

Γ2#48 = (14,−14,14,−14, . . .)

Γ2#59 = (12,−12,12,−12,12,−12,12,−12, . . .).

In this basis, the matrix in the projection condition for the rotated M5-brane becomes

R2 − 132 = 2RΓ2# (sin(−2θ)12, sin(−θ)12, sin(−θ)12, 02, sin(−θ)12, 02, 02, sin(θ)12, . . .) .

(A.4)

The 02’s in this equation that overlap with the 12’s in Γ016 indicate which components of

ǫ will be preserved, hence the full system of M2-brane, M5-brane, and rotated M5-brane

preserves 6 real supercharges.

To study probe branes we first need to translate all the type IIB D-branes to the M-

theory description, which produces various M2- and M5-branes, as well as KK monopoles.

We will not present every case in detail, rather, we will just show a few representative

examples, with decreasing amounts of supersymmetry.

First we note that when k = 0, such that the rotation matrix R is simply the identity

(and in the type IIB description we have just NS5-branes), all of the objects we study

preserve 4 real supercharges, with two exceptions: the D3-branes along (0126) and the

D5-branes along (012789). These two D-branes preserve 8 real supercharges when k = 0.

For nonzero k, the easiest example is in fact the D5-brane along (012789) (see also

refs. [29, 43]), which upon T-duality in x2 and lift to M-theory becomes an M5-brane along

(01789#). The projection condition is Γ01789#ǫ = ǫ. We can use Γ0123456789# = 132 to write

Γ01789# = Γ016Γ012345, hence this M5-brane does not impose any additional constraint on

ǫ, and preserves 6 real supercharges.

An example preserving 4 real supercharges is a D5-brane along (012349), which upon

T-duality in x2 and uplift to M-theory becomes an M5-brane along (01349#). In this case

we use 132 = −Γ25Γ25 to write Γ01349# = −Γ012345Γ2#59. In the upper-left 16 × 16 block,

Γ012345 is simply the identity, so in this subspace Γ01349# = −Γ2#59. Using the Γ-matrices

written explicitly above, we can count that this probe preserves 4 real supercharges. The

same steps obviously apply for cases related to this one by SO(3) rotations. An anti-D5-

brane will have −Γ01349# = Γ2#59, and hence will preserve 2 real supercharges.

An example preserving 3 real supercharges is a D3-brane along (0137). Here we first

rotate the D3-brane so that it is extended along (0237), which then becomes an M2-brane

along (037). We insert 132 = −Γ2#Γ2# to write Γ037 = −Γ02#Γ2#37. We need to know

the additional Γ matrix,

Γ02# = (σ1, σ1,−σ1,−σ1, σ1, σ1,−σ1,−σ1, . . .) , (A.5)
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where σ1 is the first Pauli matrix, σ1 = ((0, 1), (1, 0)). We thus have

Γ037ǫ = −Γ02#Γ2#37ǫ = (−σ1,−σ1, σ1, σ1, σ1, σ1,−σ1,−σ1, . . .) ǫ = ǫ. (A.6)

Each σ1 imposes an additional constraint on the two components of ǫ in that 2 × 2 block,

hence this brane “kills” half of the supercharges, i.e. it preserves 3 real supercharges.

The cases preserving 2 real supercharges are slightly more involved. For example,

consider the D1-brane along (07), which becomes an M2-brane along (027). Inserting132 = Γ3Γ3 we have Γ027ǫ = −Γ23Γ037ǫ = ǫ. We know that Γ037 is 2 × 2 block-diagonal in

this basis, but Γ23 is not (it can be written as Γ23 = −i12⊗12⊗σ1⊗σ1⊗12). Nevertheless,

these cases are straightforward to check explicitly, although we will not present the details.

As mentioned above, we could also consider probe branes rotated with respect to the co-

ordinate axes. In principle, such branes could have enhanced supersymmetry. We have not

analyzed all possible rotations. For many of the branes in our table we considered the spe-

cial case in which the brane is rotated by one angle in the (37), (48) and (59) planes simulta-

neously and by an independent angle in the (2#) plane. In all cases the rotated brane never

exhibits enhanced supersymmetry, and in most cases preserves fewer supersymmetries.

B Type IIB to M-theory

When we add flavor branes to the brane construction of the ABJM theory, many aspects

of the field theory are best understood from the type IIB description, while the symmetries

and the amount of supersymmetry preserved become manifest after the “near-horizon”

limit in M-theory. To determine where the probe D-branes of the type IIB setup end up in

M-theory on R2,1 ×C4/Zk, we need to find the coordinate transformations from the type

IIB coordinates, xm with m = 0, . . . , 9, to the M-theory coordinates zi, i = 1, 2, 3, 4 onC4. Our objective in this appendix is to write the zi in terms of the xm (and vice versa)

explicitly, so that we can translate directly between the two coordinate systems.

As reviewed in section 2.3, when we T-dualize along x6 and then lift to M-theory,

the NS5-brane and (1, k)5-brane both become KK monopoles in M-theory extended along

(012), so that we only need to consider the eight other directions, which we denote by

ϕ1 = x6, ϕ2 = x♯, ~x1 =







x7

x8

x9






, ~x2 =







x3

x4

x5






. (B.1)

Both x6 and x♯ have 2π periodicity. The metric describing the intersection of the two KK

monopoles is [62]

ds2 = Uijd~x
i · d~xj + U ij(dϕi +Ai)(dϕj +Aj), (B.2)

Ai = d~xj · ~ωji = dxjaω
a
ij, ∂

xj
a
ωbki − ∂xk

b
ωaji = ǫabc∂

xj
c
Uki, (B.3)

where U ij is the transposed inverse of Uij . Notice in particular that the metric is uniquely

determined by the matrix U and that the equations are linear in U so that we can obtain

the configuration for two monopoles simply by linear superposition.
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The NS5-brane becomes a KK monopole associated with the circle ϕ1 = x6 and trans-

verse directions ~x1. The corresponding U matrix reads

U =

(

1 0

0 1

)

+

(

h1 0

0 0

)

, h1 =
1

2|~x1| . (B.4)

The identity matrix in U indicates that asymptotically the space is R
6 × T 2. The (1, k)5-

brane is rotated in the (~x1, ~x2)- and (ϕ1, ϕ2)-plane. The U matrix of such a KK monopole is

U =

(

1 0

0 1

)

+

(

h2 kh2

kh2 k
2h2

)

, h2 =
1

2|~x1 + k~x2| . (B.5)

The metric describing the two intersecting KK monopoles is then

U =

(

1 0

0 1

)

+

(

h1 0

0 0

)

+

(

h2 kh2

kh2 k
2h2

)

. (B.6)

The metric in eq. (B.2), with the U matrix in eq. (B.6), is the metric of the space X8

mentioned in section 2.3.

To relate the type IIB coordinates ϕ1, ϕ2, ~x
1 and ~x2 to the C

4 coordinates zi, we

proceed in five steps. The first step is to take the “near-horizon” limit [1] that we described

in section 2.3. The four subsequent steps are simply changes of coordinates.

The “near-horizon” limit consists of taking ~x1 ∼ ~x2 ∼ 0, which in simple terms means

we drop the identity matrix from the U in eq. (B.6).

Now we change coordinates four times. The first change of coordinates will diagonalize

the new U , producing the “near-horizon” metric of strictly perpendicular KK monopoles [1]:

~x
′1 = ~x1, ~x

′2 = ~x1 + k~x2, (B.7)

ϕ′
1 = x6 − 1

k
x♯, ϕ′

2 =
1

k
x♯, (B.8)

with new U matrix U ′,

U ′ =

(

1
2|~x′1| 0

0 1
2|~x′2|

)

. (B.9)

The new circle coordinates, ϕ′
i, i = 1, 2, are 2π periodic, but the 2π periodicity of x♯ leads

to an extra identification

(

ϕ′
1, ϕ

′
2

)

∼
(

ϕ′
1, ϕ

′
2

)

+
2π

k
(−1, 1), (B.10)

that is, if we shift ϕ′
1 by a multiple of 2π

k and simultaneously shift ϕ′
2 by the opposite

amount, we end up at the same point. The above periodicity leads to the Zk action on C4,

as we will see below. In the new coordinates we have two perpendicular KK monopoles so

we will treat them simultaneously. The Taub-NUT metric of a single KK monopole in the

“near-horizon” limit is

ds2i =
1

2|~x′i|d
(

~x
′i
)2

+ 2|~x′i|
(

dϕ′
i +Ai

)2
, (B.11)
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where i = 1, 2 labels the KK monopoles.

Now we do the second change of coordinates, which is simply a change from Euclidean

to spherical coordinates, (d~x
′i)2 = dr2i + r2i (dθ

2
i + sin 2θidφ

2
i ), so that we obtain

ds2i =
1

2ri
dr2i +

ri
2

(

dθ2
i + sin 2θidφ

2
i

)

+ 2ri

(

dϕ′
i +

1

2
cos θidφi

)2

, (B.12)

where we have used Ai = 1
2 cos θidφi.

In the third change of coordinates we define a new radial coordinate ri = ρ2
i /2

and new angles ϕ′
i = ψi/2. The metric then becomes that of flat space, with an extraZk identification,

ds2i = dρ2
i +

ρ2
i

4

(

dθ2
i + dφ2

i + dψ2
i + 2cos θidφidψi

)

. (B.13)

The three angles have ranges 0 ≤ θi < π, 0 ≤ φi < 2π and 0 ≤ ψi < 4π, and the ψi have

the extra identification

(ψ1, ψ2) ∼ (ψ1, ψ2) +
4π

k
(−1, 1), (B.14)

following from eq. (B.10).

In the fourth and final change of coordinates, we introduce complex coordinates for

the first KK monopole,

z1 = ρ1 cos

(

θ1
2

)

e−i(ψ1+φ1)/2, z2 = ρ1 sin

(

θ1
2

)

e−i(ψ1−φ1)/2, (B.15)

while for the second KK monopole we choose something similar, but with i→ −i,

z3 = ρ2 cos

(

θ2
2

)

ei(ψ2+φ2)/2, z4 = ρ2 sin

(

θ2
2

)

ei(ψ2−φ2)/2. (B.16)

In these coordinates, the Taub-NUT metrics in the “near-horizon” limit have become

ds21 = dz1dz̄1 + dz2dz̄2, ds22 = dz3dz̄3 + dz4dz̄4, (B.17)

and the Zk transformation of eq. (B.14) acts as zi → e
2πi
k zi.

Tracing back through our coordinate transformations, we can write the original type

IIB coordinates (plus x♯) in terms of the zi:

x6 =
1

2
arg (z̄1z̄2z3z4), (B.18)

x♯ =
k

2
arg (z3z4), (B.19)







x7

x8

x9






=







Re(z1z̄2)

−Im(z1z̄2)
1
2 (|z1|2 − |z2|2)






, (B.20)







x3

x4

x5






=

1

k













Re(z3z̄4)

Im(z3z̄4)
1
2(|z3|2 − |z4|2)






−







Re(z1z̄2)

−Im(z1z̄2)
1
2(|z1|2 − |z2|2)












. (B.21)
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Inverting the above expressions, we can write the zi in terms of the type IIB coordi-

nates (plus x♯):

|z1|2 = x9 +

√

(x7)2 + (x8)2 + (x9)2,

|z2|2 = −x9 +

√

(x7)2 + (x8)2 + (x9)2,

|z3|2 =
(

x9 + kx5
)

+

√

(x7 + kx3)2 + (x8 + kx4)2 + (x9 + kx5)2,

|z4|2 = −
(

x9 + kx5
)

+

√

(x7 + kx3)2 + (x8 + kx4)2 + (x9 + kx5)2,

arg z1 =
x♯

k
− x6 − 1

2
arctan

x8

x7
, (B.22)

arg z2 =
x♯

k
− x6 +

1

2
arctan

x8

x7
,

arg z3 =
x♯

k
+

1

2
arctan

x8 + kx4

x7 + kx3
,

arg z4 =
x♯

k
− 1

2
arctan

x8 + kx4

x7 + kx3
.

Recall that the zi transform as a 4 of SU(4), which clearly acts nontrivially on the

xm. The U(1)b is just a common phase shift zi → eiαzi. The only coordinate that changes

under the U(1)b is x♯, which shifts as x♯ → x♯ + kα.

As explained in section 2.4, we can take a large-Nc limit in M-theory, so that the

geometry becomes AdS4 × S7/Zk, and then take also large k, so that a circle in M-theory

shrinks and we obtain type IIA in AdS4 ×CP3. Where in the geometry is the circle that

shrinks when k → ∞? To answer this question, notice that the circle direction

x6 =
1

2
arg
(

z̄1z̄2z3z4
)

(B.23)

is invariant under the Zk action, hence the circle that shrinks when k → ∞ must be part

of x♯. To show this explicitly, we return to our third change of coordinates, which involved

the angles ψ1 and ψ2, with Zk acting as in eq. (B.14). Tracing back through the changes

of coordinates, we find x6 = 1
2 (ψ1 + ψ2), which is of course invariant, and x♯ = k

2ψ2, on

which the Zk acts as a 2π shift. We can then define a coordinate y,

y =
1

4
(ψ2 − ψ1) = −1

2
x6 +

1

k
x♯. (B.24)

such that the Zk acts as y ∼ y + 2π
k but leaves all other coordinates invariant. The

direction y is thus the circle that shrinks when k → ∞. From a type IIB perspective we

are “decomposing” x♯ as x♯ = ky + kx6

2 . In terms of the zi,

arg z1 = y − x6

2
− φ1

2
, arg z2 = y − x6

2
+
φ1

2
,

arg z3 = y +
x6

2
+
φ2

2
, arg z4 = y +

x6

2
− φ2

2
,

which shows that y is simply the sum of the phases of the zi.
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ϕ1

2π

ϕ 2

(-2π /k, 2π /k)

y

(2π -2π /k, 2π /k)

'

'

Figure 1. The torus spanned by (ϕ′

1, ϕ
′

2). We have indicated the fundamental domain (the

parallelogram) and the y direction (the dotted line). A basis of one cycles is a curve in the y

direction and a curve in the ϕ′

1 direction. When k → ∞, the y circle shrinks, and the parallelogram

collapses onto the ϕ′

1
axis.

A crucial question is whether a D-brane in type IIB remains a D-brane in type IIA

on AdS4 ×CP3. After T-duality from type IIB, when we first lift to M-theory, the circle

x♯ opens up. We then take the “near-horizon” limit and Nc → ∞ to obtain M-theory

on AdS4 × S7/Zk, and then we take large k, so that the y circle shrinks, and the theory

reduces to type IIA on AdS4 ×CP3. In short, x♯ opens up but y shrinks. A D4-brane in

type IIA will become an M5-brane when x♯ opens up, but what happens when y closes?

Does the M5-brane reduce to a D4-brane again, or an NS5-brane with D4-brane flux?

The easiest way to see what happens is to return to our first change of coordinates,

and in particular to consider the torus spanned by the coordinates ϕ′
1 = x6 − 1

kx
♯ and

ϕ′
2 = 1

kx
♯. These two coordinates are orthogonal (as opposed to, say, x6 and x♯). TheZk action on these coordinates appears in eq. (B.10). We draw the fundamental domain

of the (ϕ′
1, ϕ

′
2) torus in the figure. We also indicate the y direction in the figure, where

in these coordinates y = 1
2 (ϕ′

2 − ϕ′
1). The generators of homology are the y and ϕ′

1 axes

as drawn, i.e. these form a basis of one-cycles. When k → ∞, the upper bound of the

fundamental domain moves down, so that the parallelogram collapses (in the y direction)

onto the ϕ′
1 axis. The cycles that shrink in this process are all the ones that have net

winding around y and zero winding around ϕ′
1. The shortest cycles that shrink are parallel

to the y-axis, so here again we identify y as the M-theory circle (when descending to type

IIA on AdS4 ×CP3).

Let’s consider what happens to our flavor branes when x♯ opens up and then y collapses.

We have four options: a brane can wrap x♯ but not x6, x6 but not x♯, or a brane can wrap

both, or a brane can wrap neither.

Consider a brane that wraps x♯ and sits at fixed x6. The key point is that, from the

definition of ϕ′
1 and ϕ′

2, we immediately see that such a brane will be parallel to the y-axis,

so such a brane will return to whatever it was in IIA. For example, a D4-brane localized in

x6, which lifts to an M5-brane wrapping x♯, would descend back to a D4-brane localized

in x6 when y closes.
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Now consider a brane that wraps x6 and sits at fixed x♯. Such a brane will extend

along ϕ′
1 at fixed ϕ′

2 (a horizontal line in the figure). Since ϕ′
1 is the direction that remains

when k → ∞ we see that such a brane again returns to whatever it was (now in IIA on

AdS4 ×CP3).

The last two cases are basically trivial. A brane that wraps both directions or neither

will return to whatever it was. For example, a D2-brane localized in x6 will lift to an

M2-brane that wraps neither x6 nor x♯, and will return to a D2-brane localized in x6 when

y collapses. A D4-brane wrapping x6 will lift to an M5-brane wrapping both x6 and x♯,

and hence will wrap the entire (ϕ′
1, ϕ

′
2) torus, and will become a D4-brane wrapping x6

when y collapses.

To summarize: x♯ opens up and y shrinks, and all D-branes remain the same D-branes

when we go to IIA on AdS4 ×CP3.

C Supersymmetry of M-theory objects

In this appendix we will calculate the supersymmetry preserved by probes added to the

Nc M2-branes along R2,1 sitting at the origin of C4/Zk and also for probes added to the

near-horizon geometry of Nc → ∞ M2-branes, AdS4 × S7/Zk (see [63, 64] for similar

calculations).

The number of supersymmetries preserved by our probes is the number of solutions of

the κ-symmetry condition

Γκǫ = ǫ, Γκ =
1

n!

1√−g ǫ
12...n γ12...n, (C.1)

where ǫ is the 32-component spinor of the background, n is the dimensionality of the

object (KK monopole or M-brane), and gmn = ∂mX
I∂nX

JgIJ and γm = ∂mX
IeAIΓA

are the pullbacks of the background metric and the Γ-matrices to the worldvolume of the

object. Here XI represent the scalars on the worldvolume of the object, eAI are vielbeins,

and A,B . . . are tangent space indices. The ΓA satisfy the tangent space Clifford algebra

{ΓA,ΓB} = 2ηAB , where we use a mostly-plus metric. We calculate the spinor ǫ by

demanding that the supersymmetry transformation of the gravitino, Ψ, vanishes

δΨI =

(

∂I +
1

4
ωABI ΓAB

)

ǫ− 1

288

(

ΓABCDI F
(4)
ABCD − 8ΓBCDF

(4)
IBCD

)

ǫ = 0. (C.2)

Here ωABI is the spin connection and F (4) is the four-form field strength of M-theory, while

I is a general coordinate index (A,B,C,D are still tangent space indices).

C.1 Objects in R2,1 ×C4/Zk
In this subsection we will consider M-theory on R2,1 × C4/Zk, without flux (F (4) = 0).

We add M2-branes along R2,1 and a variety of KK monopoles and M-branes. We will use

polar coordinates on C4 such that zi = ri e
iϕi . The metric is

ds2 = −
(

dx0
)2

+
(

dx1
)2

+
(

dx2
)2

+

4
∑

i=1

(

dr2i + r2i dϕ
2
i

)

. (C.3)
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M-theory Type IIA codim real supercharges worldvolume coordinates

M2 D2 0 12 x0, x1, x2

KK D6 0 6 x0, x1, x2, r1, r2, r3, r4
KK KK 0 8 x0, x1, x2, z1 = z2, z3 = z4

M5 D4 1 6 x0, x1, z1 = z2, z3 = z4

M5 NS5 1 6 x0, x1, r1, r2, r3, r4

M9 D8 1 6 x0, x1, ri, ϕi, i = 1, 2, 3, 4

M2 D2 2 4 x0, r3 = r4, ϕ3 = −ϕ4

M2 F1 2 6 x0, z1 = z2 = z3 = z4

Table 3. List of supersymmetry-preserving objects of given codimension and given worldvolume

directions in C4/Zk. The second column indicates what the probes become in type IIA (large k).

For details see the accompanying paragraph.

In these coordinates the spinor on R2,1 ×C4 is

ǫ = ei
ϕ1
2

Γr1ϕ1 ei
ϕ2
2

Γr2ϕ2 ei
ϕ3
2

Γr3ϕ3 ei
ϕ4
2

Γr4ϕ4 ǫ0 ≡Mǫ0, (C.4)

where ǫ0 is a constant 32-component spinor. The Zk acts as ϕi → ϕi + 2π
k , ∀i. We write

ǫ0 as a sum of eigenspinors ǫs1s2s3s4 that satisfy Γriϕi
ǫs1s2s3s4 = isiǫs1s2s3s4 for i = 1, . . . , 4,

where si = ±1. For the spinor to be invariant we demand that
∑

i si = 0 for k > 2. This

means that of the 16 combinations of (s1, s2, s3, s4) = (±1,±1,±1,±1), we project out

10 combinations and preserve 6. A spinor in R2,1 has two real components so that the

6 preserved combinations correspond to a total of 12 real preserved supercharges. From
∑

i si = 0 we find that
∏

i si = 1 and therefore that ǫ = Γ01...r4ϕ4
ǫ = Γ012(i)

4s1s2s3s4ǫ =

Γ012ǫ, so the projection condition for the color M2-branes is automatically satisfied, i.e.

the M2-branes do not break any additional supersymmetry.

Now we can calculate Γκ for any given embedding using eq. (C.1), check how many

supercharges are preserved by the condition15 Γκǫ = ǫ ⇔ M−1ΓκMǫ0 = ǫ0, where ǫ0 is

the 12-component spinor from above. The calculation is fairly easy. We summarize our

results in table 3, and work out explicit examples in the more complicated background of

AdS4 × S7/Zk in the next subsection. In the table we restrict ourselves to objects that

sit at the origin of C4/Zk. We can use the SU(4) × U(1) symmetry to set any constant

phase factor to zero so that configurations that differ from those in the table by constant

shifts in any of the ϕi preserve the same amount of supersymmetry. The table contains the

four examples studied in this paper and also some other easy configurations. The second

column indicates what the resulting object is in type IIA for k → ∞ and the third column

gives the codimension of the probe in R2,1.

15The cautious reader might worry whether this procedure is applicable to KK monopoles and the myste-

rious M9-branes. We will not give a direct proof, rather we will think of this one condition as a combination

of the two projection conditions for the left- and right-handed spinors for D6- and D8-branes in type IIA.
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C.2 Objects in AdS4 × S7/Zk
In this section we study objects in the geometry obtained as the near-horizon limit

(Nc → ∞) of the Nc M2-branes. First we introduce new coordinates

z1 = r cosα sin β eζ1 , z2 = r cosα cos β eζ2 z3 = r sinα sin γ eζ3 , z4 = r sinα cos γ eζ4

With these coordinates, the metric of AdS4 × S7 becomes

ds2 =
R2

4

(

dr2 + e2r
(

−dt2 + dx2
1 + dx2

2

))

+R2
(

dα2 + cos 2α dβ2 + sin 2α dγ2 (C.5)

+ cos 2α sin 2β dζ2
1 + cos 2α cos 2β dζ2

2 + sin 2α sin 2γ dζ2
3 + sin 2α cos 2γ dζ2

4

)

,

where 0 ≤ α, β, γ ≤ π
2 and 0 ≤ ζi < 2π. We also have the flux F (4) = 3

8R
3ΩAdS4

with

ΩAdS4
being the volume form of AdS4.

From the supersymmetry variation of the gravitino we find that the spinor preserved

by this background is

ǫ= e−
r
2
ΓrΓ̂

(132 +
1

2
xµΓµΓ̂

(132 + ΓrΓ̂
)

)

e
α
2
ΓαΓ̂e

β
2
ΓβΓ̂e

γ
2
Γαγe

ζ1
2

Γβζ1e
ζ2
2

Γζ2
Γ̂e

ζ3
2

Γγζ3 e
ζ4
2

Γαζ4 ǫ0

≡ MAdSMαβγMζǫ0 ≡Mǫ0, (C.6)

where ǫ0 is a constant 32-component spinor, Γ̂ = Γ012r = −Γ012r, MAdS is the part of M

that depends on AdS4 coordinates, and similarly for Mαβγ and Mζ . The Zk quotient acts

as ζi → ζi +
2π
k . We write the spinor ǫ0 as a sum of eigenspinors of (Γβζ1 ,Γζ2 Γ̂,Γγζ3 ,Γαζ4),

that is, Γβζ1ǫs1s2s3s4 = is1ǫs1s2s3s4, etc.; since only the eigenspinors that satisfy
∑4

i=1 si = 0

are invariant under Zk for k > 2, the background preserves 24 real supercharges for k > 2.

This can be seen from 132 = Γ01...ζ3ζ4 = s1s2s3s4132 which implies an even number of

positive and negative si. The condition
∑4

i=1 si = 0 therefore projects out the two cases

where all si are the same, and is satisfied for the other six cases, so 6
8 of the 32 supercharges

(hence 24) are preserved.

Now we will explicitly solve the κ-symmetry equation for the four objects discussed

in sections 4, 5, 6, and 7. As mentioned in the previous subsection, we think of this one

condition in M-theory as a combination of the two projection conditions for the left- and

right-handed spinors for D-branes in type IIA.

We start with the codimension-zero KK monopole of section 4. Although we can use

the SU(4)×U(1) symmetry of the background to set constant phases to zero, we will keep

them explicitly in our calculation. This is useful if we want to consider multiple stacks

of probes that sit at different constant phases. Instead of choosing the embedding such

that Im(zi) = 0, ∀i, we will be more general and take the worldvolume coordinates to be

x0, x1, x2, r, α, β, γ and set the phase to constant values ζ0
i . For this embedding we find

Γκ = Γ012rαβγ and

M−1ΓκM = M−1
ζ ΓκMζ = ΓκM

2
ζ = Γ012rαβγe

ζ01Γβζ1eζ
0
2Γζ2

Γ̂eζ
0
3Γγζ3 eζ

0
4Γαζ4 . (C.7)

Solving Γ012rαβγe
ζ01Γβζ1eζ

0
2Γζ2

Γ̂eζ
0
3Γγζ3 eζ

0
4Γαζ4 ǫ0 = ǫ0 we find that 12 real components are

preserved. Comparing with the second row in table 3, we see that after the near-horizon

limit the amount of supersymmetry has doubled, as expected.
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Now we look at the codimension-one case of section 5, that is, the lift of D8-branes to

M-theory. We choose the ten worldvolume coordinates to be (x0, x1, r, α, β, γ, ζ1 , ζ2, ζ3, ζ4),

and find that Γκ = Γ01rαβγζ1ζ2ζ3ζ4 = Γ2, where we have used Γ012rαβγζ1ζ2ζ3ζ4 = 132. Γκ
commutes with Mαβγ and Mζ , so we find

M−1ΓκM = M−1
AdSΓκMAdS =

(132 − x2Γ2Γ̂
(132 + ΓrΓ̂

))

Γκ

=
(132 − x2Γ2Γ̂

(132 + ΓrΓ̂
))

Γ2. (C.8)

Demanding that M−1ΓκMǫ0 = ǫ0 again reduces the components of ǫ0 by a factor of 1
2 , so

that we find 12 preserved supercharges.

The next codimension-one case, from section 6, are M5-branes extended along AdS3

inside AdS4 and embedded such that z1 = z2 = 0. Recall that this embedding is SU(4)-

equivalent to the one used in table 3 (see section 6.1). The worldvolume coordinates

are (x0, x1, r, γ, ζ3, ζ4) and we have to set α = π
2 , which leads to Γκ = Γ01rγζ3ζ4. Since

M−1
αβγΓκMαβγ = −Γ̂ΓαΓκ and Mζ commutes with that, we find

M−1ΓκM = −M−1
AdSΓ̂ΓαΓκMAdS = −

(132 − x2Γ2Γ̂
(132 + ΓrΓ̂

))

Γ̂ΓαΓκ

= −
(132 − x2Γ2Γ̂

(132 + ΓrΓ̂
))

Γ2αγζ3ζ4 . (C.9)

We then find that 12 real supercharges are preserved. Again we see that the probes reduce

the amount of supersymmetry of the background by a factor of 1
2 , and that the near-horizon

limit leads to a doubling of the preserved supercharges (cf. table 3).

Finally we look at the example from section 7, codimension-two M2-branes embedded

such that z1 = z2 = 0, z3 = z̄4. Again we will be slightly more general and allow for

constant phases. We take the worldvolume coordinates to be x0, r, ζ3 and set α = π
2 , γ =

π
4 , ζ1 = ζ0

1 , ζ2 = ζ0
2 , ζ4 = −ζ3 + ζ0, where ζ0

1 , ζ
0
2 , ζ

0 are constants. We then find

Γκ =
1√
2
Γ0r (Γζ3 − Γζ4) . (C.10)

Next we write M = MAdSMαβγMζ and note that the AdS part commutes with the rest,

so we first calculate

M−1
AdSΓκMAdS =

(132 −
(

x1Γ1 + x2Γ2

)

Γ̂
(132 + ΓrΓ̂

))

Γκ. (C.11)
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We then use α = π
2 to find

M−1
αβγM

−1
AdSΓκMAdSMαβγ =

=
(132 −

(

x1Γ1 + x2Γ2

)

Γ̂
(132 + ΓrΓ̂

))

e−
γ
2
Γαγe−

β
2
ΓβΓ̂e−

α
2
ΓαΓ̂Γκe

α
2
ΓαΓ̂e

β
2
Γβ Γ̂e

γ
2
Γαγ

=
(132 −

(

x1Γ1 + x2Γ2

)

Γ̂
(132 + ΓrΓ̂

))

e−
γ
2
Γαγe−

β
2
ΓβΓ̂Γκe

αΓαΓ̂e
β
2
Γβ Γ̂e

γ
2
Γαγ

=
(132 −

(

x1Γ1 + x2Γ2

)

Γ̂
(132 + ΓrΓ̂

))

e−
γ
2
ΓαγΓκΓαΓ̂e

γ
2
Γαγ

=
(132 −

(

x1Γ1 + x2Γ2

)

Γ̂
(132 + ΓrΓ̂

))

Γκ
1√
2

(Γα + Γγ) Γ̂

=
(

Γ̂ +
(

x1Γ1 + x2Γ2

)

(132 − ΓrΓ̂
))

Γκ
1√
2

(Γα + Γγ)

=
1

2

(

Γ̂ +
(

x1Γ1 + x2Γ2

)

(132 − ΓrΓ̂
))

Γ0r (−Γαζ3 + Γαζ4 − Γγζ3 + Γγζ4) . (C.12)

Since eq. (C.12) commutes with Γβζ1 and Γζ2Γ̂ we have

M−1ΓκM = e−
ζ4
2

Γαζ4 e−
ζ3
2

Γγζ3
1

2

(

Γ̂ +
(

x1Γ1 + x2Γ2

)

(132 − ΓrΓ̂
))

Γ0r

× (−Γαζ3 + Γαζ4 − Γγζ3 + Γγζ4) e
ζ3
2

Γγζ3 e
ζ4
2

Γαζ4

=
1

2

(

Γ̂ +
(

x1Γ1 + x2Γ2

)

(132 − ΓrΓ̂
))

Γ0r

×
(

Γαζ4 − Γγζ3 + cos ζ0 (Γγζ4 − Γαζ3) + sin ζ0 (Γαγ + Γζ3ζ4)
)

. (C.13)

Acting with this on the 24-component constant spinor ǫ0, we find that such branes preserve

8 real supercharges. Note that although the projector depends on ζ0, we find that the

preserved supercharges depend only on the position in x1, x2 and not on the constant

phases ζ0
1 , ζ

0
2 , ζ

0.

D N = (0, 6) supersymmetry transformations

In this appendix we discuss the supersymmetry transformations of the codimension-one fla-

vor field theories of sections 5 and 6. In particular, we show that the gauge field somponent

A−, appearing in the Lagrangian of the codimension-one chiral field theory of section 5,

eq. (5.2), is invariant under N = (0, 6) supersymmetry.

The supersymmetry algebra of the ABJM theory is
{

Q(I)
α ,Q(J)

β

}

= −2δIJ (γµ)αβ Pµ, (D.1)

where (γµ)αβ is given by γµ = (−1,−σ3, σ1) and µ = 0, 1, 2. The index α = 1, 2 labels

the components of the real two-component spinor Q. (Notice that we are using different

conventions from those in section 2.1.)

Let us place the defect at x2 = 0. Since the translational invariance in x2 direction and

therefore the momentum P2 is broken, some of the supersymmetry charges are also broken.

Let us discuss the broken supersymmetry generators for the N = (0, 6) and N = (3, 3)

supersymmetric flavor theories.
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The broken supersymmetry generators for the N = (0, 6) supersymmetric flavor theory

are Q(I)
1 . An explicit check shows that, upon setting Q(I)

1 = 0, the algebra reduces to a

supersymmetry algebra for a (1+1)-dimensional theory, i.e. P2 drops out.

The broken supersymmetry generators for the N = (3, 3) supersymmetric flavor theory

are more complicated since the obvious guess, setting half of the supersymmetry generators

Q(I) to zero, is wrong. For simplicity let us consider the algebra just for two supersymmetry

generators, say I = 1 and I = 2,
{

Q(1)
α ,Q(1)

β

}

=
{

Q(2)
α ,Q(2)

β

}

= −2 (γµ)αβ Pµ,
{

Q(1)
α ,Q(2)

β

}

= 0 . (D.2)

Since we want to eliminate P2 and σ2 is off-diagonal, we have to define the new supersym-

metry charges,

Q̃1 ≡ Q(1)
1 , ¯̃Q2 ≡ Q(2)

2 , /̃Q1 ≡ Q(2)
1 , /̃Q2 ≡ Q(1)

2 , (D.3)

and set /̃Q1 = /̃Q2 = 0. The remaining supersymmetry generators Q̃α, α = 1, 2, satisfy

the (1+1)-dimensional supersymmetry algebra. This procedure can be straightforward

generalized to six supersymmetry generators. The unbroken supercharges generate a N =

(3, 3) supersymmetric algebra in (1+1) dimensions.

In order to determine the supersymmetry transformation for A− in the N = (0, 6)

supersymmetric theory, we use the conventions and supersymmetry transformations of

ref. [65]. Let us quote the supersymmetry transformation of the gauge fields Aµ and Âµ
(the gauge fields of the two gauge groups),

δAµ = ΓIAB ǭ
IγµΨ

AXB − Γ̃IABXBΨ̄Aγµǫ
I , (D.4)

δÂµ = ΓIAB X
B ǭIγµΨ

A − Γ̃IABΨ̄Aγµǫ
IXB , (D.5)

where XA, A = 1, . . . , 4 are the four complex scalars and ΨA are the spinor fields of the

ABJM theory (in the notation of ref. [65]). The spinor field ΨAα has a lower spinor

index, whereas the conjugated field Ψ̄α
A carries an upper spinor index. Note that (γµ) β

α =

(iσ2, σ1, σ3) for µ = 0, 1, 2. The conjugate fields ΨA and XB are denoted by upper indices.

Moreover, ǫI are real two-component spinors for I = 1, . . . , 6, and the 4 × 4 matrices

ΓI , I = 1, . . . , 6 satisfy the commutation relation

ΓI Γ̃J + ΓJ Γ̃I = 2 δIJ , (D.6)

where Γ̃I =
(

ΓI
)†
. Let us decompose ǫI into

ǫI =

(

ǫIR
ǫIL

)

, (D.7)

and set ǫIL to zero since the Q̃(I)
2 are broken in the N = (0, 6) algebra. Finally, intro-

ducing lightcone coordinates x± = x0 ± x1, the unbroken right-handed supersymmetry

transformations δR,I with respect to ǫIR of the gauge field components read

δR,I A+ = ΓIABǫ
I
RΨA

RX
B − Γ̃IABXBΨRAǫ

I
R , (D.8)

δR,I A− = 0 , (D.9)

δR,I Â+ = ΓIABX
BǫIRΨA

R − Γ̃IABΨRAǫ
I
RXB , (D.10)

δR,I Â− = 0 . (D.11)

In particular we see that A− and Â− do not transform under N = (0, 6) supersymmetry.
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